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ABSTRACT

Abstract

There is an increasing demand for fast drone deliveries for both consumer’s necessities
and medical emergencies. All aircraft are subject to landing difficulties because of near-ground
aerodynamic effects and complications with moving from air to land. In addition to improving
delivery, there have been many developments within space research aiming to reduce global
cost. Reusable rockets are regarded as the future of space travel, however, numerous accidents
have been observed during landing, making these rockets an unreliable resource for experi-
mentation. The standard approach for both drone delivery and reusable rockets requires speed
reduction before landing, as explained by the lack of precision of the embedded sensors com-
bined with the fragility of the frame. The landing shock thus needs to be attenuated to deform
irremediably the frame structure. Therefore there is a need for improvement of landing ap-
proach for more reliability. The main research contents of this thesis cover different areas for
the development of a newly designed electric thrust vectored rocket that aims to incorporate a
fast landing approach using this new benchmark system.

Firstly, this research proposes an improved perception with a convolutional neural network
architecture for landing pad localization. This is an efficient and robust way to estimate target
localization that provides a larger field of view than using the traditional ArUco marker. The
lack of a dataset for visual pose estimation in the landing approach forced the research to develop
its own. The use of a realistic 3D motor engine made it possible to manage all the parameters
of the generated images. An appropriate landing pad shape is also proposed to permits a large
range of target vision, even seeing only part of the landing area.

Secondly, a robust control algorithm has been designed for visual servoing. A multi-scale
control is proposed to increase drone landing accuracy using a fractal targeted shape for the land-
ing pad. The use of optimal pose estimation, even with a low measurement rate, has increased
the drone landing accuracy of the ArUco marker. Using the neural network in a simulated en-
vironment, the processing rate has been multiplied by three. The reduction of the landing time
was considerably faster than the traditional landing approach, which was a result of increasing
the speed at landing.

Finally, this thesis proposes an innovative landing leg kinematic to help at a high-speed
landing. The landing collision is smoother with a real reduction of the bounce effect, absorbing
more than ten times the kinetic energy of a standard landing leg. Two types of landing gears have
been proposed: a standard mechanism that confirmed the interest of absorption of the landing
velocity, and an improved compliant mechanism. The second one shows better effects at landing
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with a lighter weight and more internal frictions. The use of adapted gears thus provides greater
protection for the drone against landing impact.

Key words : Compliant Mechanism, Deep Learning, Convolutional Neural Network,
Kalman Filter, Multi-Scale
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1 INTRODUCTION

1 Introduction

1.1 Background and Motivation

There is an increasing desire to go space, however, space travel is still extremely costly
and there are many uncertainties that remain present. The development of reusable rockets is
necessary because it drastically decreases the price of rocket production and ultimately space
travel. However, current simulations of rocket algorithms do not always suit reality as there
are always unexpected variations that occur between the simulation and the real-world. The
electric thrust vectored rocket has the advantage to overcome these variations and be more re-
liable than a simulation. The rocket also has the advantage to be used in the real world through
Guidance, Navigation and Control (GNC) algorithm, and a unique frame that can provide a
vectored thrust with intensity control. Although the electrical rocket (e-rocket) has numerous
promising qualities in addition to being sustainable, there are still some existing issues that re-
main, which include the lack of combustion that forces the rocket to stay within the atmosphere.

Here is shown the electric thrust vectored rocket visible on the figure below. The body part
of the e-rocket is developed in parallel to the thesis in another project. Most of the components
used in the e-rocket come from drone components, in other words, it is controlled like a drone
and can easily be substituted for the development. The motors are Electric Ducted Fan (EDF)
mounted in series on a 2-axis gimbal, and the entire structure is PLA 3D printed.

(a) Profile view (b) Face view (c) Top view with
air brakes opened

(d) Three quarter
view with air brakes
opened

Fig. 1-1 General assembly views of the e-rocket
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The e-rocket is cheap and has two main applications: help rocket labs develop algorithms
for rockets; and other industrial applications that include emergency deliveries or fast deliver-
ies. The e-rocket can provide the five stages of flying systems listed [1]: takeoff, climb, cruise,
descent, and landing. During the descent phase, air brakes open like in Fig. 1-1d Instead of
using the e-rocket, this paper uses a standard quadcopter Unmanned Aerial Vehicle (UAV) and
focuses on the autonomous landing stage at the end of the descent. The interest points are in the
light-weight embedded hardware for system localization, GNC algorithm, and specific landing
gears.

As the e-rocket frame was not fully functional at the time when the paper was written,
the landing approach will use a standard quadcopter that perfectly replaces the system. The
proposed project is to create a benchmark that can embed a GNC algorithm. It does not have
combustion problems because it has drone components. The thrust is vectored with two motors
in series, mounted on a gimbal. This is done to achieve a conventional rocket design, but switch-
ing the traditional combustion motor into a more stable electric motorization. The e-rocket flies
at faster vertical speed than standard quadcopters, which justifies the need for further improve-
ment.

Firstly, the landing area needs to be understood faster and more accurately than a standard
landing drone. Motion capture technology like Vicon proposes an expensive alternative that is
not applicable outside of the laboratory. GPS for long ranges and cameras near to the ground
also helps obtain better localization. This study provides a monocular camera with a landing pad
recognition. Traditional object recognition needs important computational consumption. The
machine learning algorithm can reduce this amount of computer consumption and time. For a
first Neural Network (NN) implementation, supervised learning can provide quite impressive
results. The recent improvement of 3D software rendering, make virtual worlds accurately re-
semble the real-world. One can notice the recent use of Unreal Engine to instantly create the
background of the series The Mandalorian. Then virtual data can be created for real application
but this target estimation depends on the integrity of the system.

Within the drone community, many tools are open-source to help drone autonomous im-
plementation. The autopilot is a fork of the last stable version of the PX4 software. The work
will not recognize a low-level algorithm for stability. It will, in turn, use a higher control level
of the system with horizontal and vertical speed control. Landing pad localization is done on
a companion computer, and landing pad localization is enhanced using a Kalman Filter (KF)
application. The localization is multi-scale controlled to have specific control of the altitude.

Observation of every kind of landers like rockets or quadcopters shows uncontrolled bumps
at ground impact. Even with a low vertical speed, Space-X boosters or drone landing [2] have

2
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either crashed or have been close to an incident. A good example of this is the comet landing of
Rosetta, where the bounce of the space lander has so strong and almost ended themission. In this
thesis, the drone will land on a prepared hard ground. In contrary to sandy terrain which absorbs
kinetic energy, a solid landing pad returns all of the energy. The landing gear is composed of
many pieces, but this complexity can be resolved using one unique piece. Research on compliant
landing gears can keep the necessary kinematic and absorption effect with a specific design.

1.2 Relative Works

Autonomous drone landing is a robotic project combining signal processing, control theory,
and mechanical design. The following review shows state of the art about drone autonomous
landing and more specifically, landing with visual servoing. This section begins with related
papers about autonomous landing UAVs projects, then focuses on image processing for landing
pad localization, then follows the guidance of the drone using visual data, and finishes with the
design of the landing gear.

1.2.1 Related Landing Project

Drone autonomous landing has been widely studied and exists extensively throughout the
scientific literature. Drone landing is constantly challenging because it enrolls various fields
that are state of the art. Three major surveys are noticeable. The first [3] lists different kinds of
UAVs and highlights the fact that a good Flight Controller (FC) is required. There is no ideal
sensor present for landing. Even if vision-based flight provides sufficient results, it might be
sensible to fog and mist. The second survey [1] focuses on vision-based landing and catego-
rizes drone systems according to their sized. The research presented in this paper uses on-board
vision, in opposition to on-ground vision systems. Requirements are for precision target lo-
calization on a low-resolution camera, and a low horizontal and vertical speed to protect the
equipment. The third survey, the most recent one [4] has the same challenging problem using
a low-resolution camera. [5] reaches to control drone position in a GPS-denied environment
with a low-cost drone. The result is inaccurate due to the poor quality of the sensors.

Concerning accuracy, most of the presented projects have a decimeter accuracy at landing.
[6] had for instance a 40cm error in position for 73 s to land from a 10 m height in 2002. Recent
study like [7] improve the performance with a 20 cm error for a 10 s land from 3 m altitude.
Although the more accurate ones do not specify the duration of the manoeuvre.

These surveys are now outdated and many new drone autonomous landing papers have
been published. However, recent studies can answer recent problems with other standards tools
and techniques. Recent studies like [8] [9] embed a NN algorithm to try to increase pose estima-

3
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tion rate and accuracy. The request for high-speed pose estimation and control for autonomous
drone racing is reviewed in the drone control section.

Autonomous drone landing have been done on moving platform [7, 10-13] even with high
speed [2]. The approach to land on target having a uniform rectilinear movement is sensibly
the same as to land on a static target.

After all, the use of a camera sensor seems to provide cheap and lightweight UAV pose
estimation. The following section reviews the use of image processing for pose estimation.

1.2.2 Image Processing

Visual targeting tries to get an accurate localization of the drone relative to the landing pad.
Most of the landing techniques involve a coded target to signal the target location. [10] describes
an autonomous precision landing technique utilizing QR-codes in an image-based visual servo-
ing control loop for the descent. In the presentedmethod, the majority of the control calculations
occurred in image space to reduce computational hardware requirements. Similarly, [14] de-
scribes a vision algorithm for detecting a custom landing target, based upon concentric rings.
Moreover, their approach utilized in-depth information extracted from the landing target that
guided the multi-rotor to the landing target.

A specific image pattern is needed to locate the target.

(a) X-shaped marker (b) Circles marker (c) Square-based fidu-
cial marker

(d) Fractal marker (e) Complex
shape

Fig. 1-2 Landing pad shapes

Fiducial markers 1-2c have proved their reliability for aggressive drone landing [2] and
have recently been used [15]. A recent proposed improvement is the use of fractal marker 1-2d,
which allows a wide range of pose estimations and is robust to partial cover. [16] propose a
library, like [17] a multi-scale target detection is possible.

4
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Then more complex shape 1-2e are used for NN algorithms like in [8]. For spaceships in
deep space, many algorithms are used for object detection [18-22]. In the present day, a lot of
algorithms perform this recognition using deep learning methods. Object detection in images
is the traditional form of this problem, but recently there are many different specializations of
the classic problem [23, 24]. Recent papers have shown the use of target detection for drone
landing that uses these NN algorithms [9, 25, 26]. This type of algorithm [27] can also detect
other features.

Dataset for landers exist, but are specific to deep-space exploration [28]. A recent dataset
[29] has been published, but it is specific to drone racing. It provides 27 sequences of racing
drones piloted in First Person View (FPV) and is inspired by autonomous driving cars. The
drone racing dataset contains synchronized IMU, camera, and event camera data recorded in
indoor and outdoor environments. This lack of dataset even pushed [30] to create the dataset
with a ground vehicle. Otherwise, in a previous study [31], virtual learning was applied to a
robot, which was then able to decipher different shapes from one another, proving that virtual
learning can be applied in real-world scenarios. Target images need to be combined with their
respective 6 DOF localization. Regression in supervised learning, oftentimes only use numer-
ical data. [32] provides a method that mixes numerical data and images in supervised learning
for house pricing estimation.

Two methods seem to get similar results. The first one is to use a fiducial marker and
standard image processing to estimate drone pose relative to the marker. The second one is to
use a specifically trained NN. It should estimate drone localization with a faster sampler rate
and thus perform real-time computing. The better the pose of the landing pad area is, the more
accurate the drone control should be.

1.2.3 Drone Control

The quality of drone control depends on the quality of the measured data. Robust trajectory
landing was firstly developed for deep space exploration [33]. Quadrotor’s literature [4] name
controlling the motion with visual feedback as visual servoing. An Image-Based Visual Ser-
voing (IBVS) is seen in figure 1-3b to have better results than Position-Based Visual Servoing
(PBVS) visible on 1-3a.
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(a) The block diagram of the PBVS control (b) The block diagram of the IBVS control

Fig. 1-3 Difference between PBVS and IBVS block diagram [4]

Fast control for aggressive maneuvers is still a struggle for drone control. [29] have for in-
stance been published to help development of IROS autonomous drone race [34]. And contrary
to IBVS, impressive controlled results [35-39] required a precise understanding of the environ-
ment using motion capture technology.

Optimal estimation is based on KF [40]. Multi-scale perception has proved its reliability
on horizontal high-speed landing [2], and it is often combined with a Proportional–Integral–
Derivative (PID) controller [41, 42]. Even waypoint navigation [43] can be controlled with a
PID with high accuracy results. Other control including NN [44, 45] or model predictive con-
trol [7, 12, 46] wont be studied in this paper.

The use of ROS (Robot Operating System) made an easier implementation of drone control
using image-based pose estimation [47]. The combo ROS with the Gazebo simulator is now
used to develop a control algorithm on the Linux platform [48, 49]. This last one introduces the
use of ArduPilot autopilot firmware, but PX4 autopilot provides the same kind of use as [50,
51]. Moreover, PX4 seems to have proven its reliability on [11, 52]. This autopilot is mainly
used with the Pixhawk [53] hardware which is simulated on PX4 with Gazebo.

Thus, using image processing with smart data filtering, and accurate servoing can be done.
This allows further to perform aggressive drone control.

1.2.4 Mechanical Leg

Aggressive landing needs to embed an adapted mechanical structure. Space landers are the
most studied mechanism that absorbs landing impact like for this lunar lander[54]. Recently
[55] proposed a new type of mechanism for space landers. At landing, the theoretical mecha-
nism, absorb impact energy by transforming kinetic energy into elastic energy.

Two notable papers exist regarding drone landing gears. The first one [56] is a theoreti-
cal study that provides an active bionic leg. The second one [57] is a bio-inspired landing leg,
which facilitates landing on different surface types. When studied on 2cm displacement, the
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absorption effect was almost similar to other landing gears. These legs embedded servo-motors
for retraction during flight, which increased the dead weight.

Recent studies on compliant mechanisms show different advantages. It is possible to repro-
duce mechanisms and keep the same properties. [58] for swivel or [57] for spring. For instance,
[59] propose pneumatic origamic legs. Another example of a soft landing leg is shown on [60].

Thus, reviews of this section try to find a lightweight landing gear that performs a fair
energy absorption. Only [55] performs a tangible energy transformation.

1.3 Main Work and Organisation

The research begins with the basic theory in Chapter 2. All mathematical tools and no-
tations used are presented. Because it is robotic work, different fields of science cross over
each-other. Conventions to write equations are also fixed to help the reader.

Chapter 3 follows the perception embedded in the drone. The study provides a lightweight
landing pad position estimator, by only using a monocular camera. Two kinds of the algorithm
are presented to be compared. Both of them will have a preprocessed image from the camera.
The traditional fiducial marker is firstly presented. It allows good localization of marker in
space, including rotations related to the camera. Secondly, the smart implementation of NN is
used. Well trained NN are known to be fast algorithms with what can be called intuition and
fast calculations. This position estimation aims to provide a more precise position estimation
at a faster rate. A virtual dataset is generated and allows specific training of the NN with per-
fect camera localization. Image parameters are also fixed to match the implementation. Here
OpenCV with Python permits image processing.

Chapter 4 presents guidance and control implemented in the drone. During the standard
landing, drone descends too slowly and lacks precision. Thus, the drone needs to have a faster
vertical velocity, and the position needs to be computed to land more accurately. The mod-
ules used are introduced and communication between each-other is explained. Then the thesis
presents simulation using Software In The Loop (SITL) and implementing its control. The sim-
ulator is Gazebo. It is made for the computer vision application and consumes relatively low
computing power. A Bayesian optimal estimator provides a filtered system position to land
with greater accuracy. To ensure full control of the drone, a scale-adjusted control was created
to maintain accuracy before and throughout the descend.

The last part of this thesis presents the mechanical absorption of drone gears in Chapter 5.
The purpose of this part is to increase drone speed at landing. The paper will examine the air

7



西北工业大学硕士学位论文

to land effect, and the collision absorbed by the structure. It begins with the simulation of the
drone bounce at landing. This is a study of the effects of shock absorber for drone landing. This
paper will also explore the maximum impact velocity a drone can reach, how kinetic energy is
absorbed, and the landing effects associated with a light landing leg. This section useMATLAB
and Simulink. Then the proposed shock absorber kinematic is presented, designed with Solid-
works 2018. A compliant version of the landing gear tries to have the same kinematic linkage,
bounce, and absorption.
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2 Basic Theory

Robotics often mix different fields of research. Here image processing, deep learning,
control theory, and mechanics will be reviewed. The theoretical background of this different
area is presented in this above.

2.1 Image Processing

According to [61] work, vision is the most advanced sense, that why it plays a major role
in human perception.

Digital image processing mainly stems from two application areas: improvement of in-
formation for human interpretations and image processing for storage, transmission, and rep-
resentation for the autonomous machine. An image is defined by a two-dimensional function
f(x, y). Thus (x, y) are coordinates of the spatial plane and f is the gray level intensity of the
picture. It is also called a pixel.

2.1.1 Image Processing Background

Notation for N ×M image will follow this compact matrix form,

f(x, y) =


f(0, 0) f(0, 1) . . . f(0, N − 1)

f(1, 0) f(1, 1) . . . f(1, N − 1)
...

...
...

f(M − 1, 0) f(M − 1, 1) . . . f(M − 1, N − 1)

 (2-1)

Each element of the matrix is a pixel of the digital image. When matrix will be used in the
above section, the standard convention will be used,

A =


a0,0 a0,1 . . . a0,N−1

a1,0 a1,1 . . . a1,N−1

...
...

...
aM−1,0 aM−1,1 . . . aM−1,N−1

 (2-2)

Pixel Neighbors

At coordinate (x, y) a pixel p has 4 horizontal and vertical neighbors called 4-neighbors
and denoted N4(p),

N4(p) = (x+ 1, y), (x− 1, y), (x, y + 1), (x, y − 1) (2-3)
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The four diagonal neighbors ND(p) of p are,

ND(p) = (x+ 1, y + 1), (x+ 1, y − 1), (x− 1, y + 1), (x− 1, y − 1) (2-4)

All the neighbors together are the 8-neighbors such as,

N8(p) = N4(p) +ND(p) (2-5)

This can be summarised with the following figure 2-1,

Fig. 2-1 8-neighbors of a pixel ; 4-neighbors in blue ; diagonal neighbors in red

The neighbors can be generalized with more layers of pixels around the target pixel in
white in Fig. 2-1.

2.1.2 Image Enhancement

The purpose of enhancement is to process a picture for a specific application and have
a result more useful than the original image. It allows us to highlight details, remove noise,
and, for a subjective point of view, making an image more appealing. Two techniques are used:
spatial domain technique by direct manipulation of the image, and frequency domain technique.

Input image f is though transformed by T to an output g,

g(x, y) = T [f(x, y)] (2-6)

Basic transformations are then presented for gray level image range [0, L-1] where L ∈
]0, IN]
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2.1.3 Basic Transformations

Transformations are used to enhance some image parts and highlight the expected infor-
mation. The following examples are the most used for image processing.

Negative The negative transformation allows negative pixel values to be passed positively
and vice versa. This is defined with the equation 2-7,

g(x, y) = L− 1− f(x, y) (2-7)

A graph representation of the negative transformation is shown in the following graph Fig.
2-2,

Fig. 2-2 Some basic gray-level function for enhancement

The figure 2-2 also graphically shows how the logarithmic and power-law transformations
are taking place. These two equations are respectively written in equation 2-8 and 2-9 below,

Logarithmic

g(x, y) = a+
ln(f(x, y) + 1

b.ln(c)
, (a, b) ∈ IR2 (2-8)

Power-law
g(x, y) = c.f(x, y)γ(c, γ) ∈ IR+2 (2-9)
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A more precise representation of the power-low is given on the following graph Fig. 2-3,

Fig. 2-3 Plots of power-law equation for different γ and c = 1

Piecewise Linear Transformation None continuous enhancement is often providedwith a piece-
wise linear function such as the following one in Fig. 2-4,

Fig. 2-4 Example of piecewise transformation function

In this example Fig. 2-4, first linear function on [0, S1] is,

12



2 BASIC THEORY

g(x, y) =
S1

r1
f(x, y) (2-10)

Other examples with intensity-level slicing are then presented in figure 2-5,

Fig. 2-5 Two examples of intensity-level slicing transformation function

Histogram Processing

Histogram of an image is a discrete function,

h(rk) = nk (2-11)

Where rk is kth intensity value and nk is the number of pixels. It is common to normalize
the histogram,

p(rk) =
nk

n
(2-12)

Where n is the total number of pixels.

Better images have spaced histograms because all possible frequency space is used. But it
is notable that different images can have the same histogram.

2.1.4 Camera Calibration

Thiswork uses the pinhole cameramodel. Using optic lenses has an effect to deform image.
Camera calibration allows determining the relation between pixels and real-world distances. In
this model 3D points are projected into the 2D image plan with perspective transformation such
as,
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uv
1

 =

fx 0 cx

0 fy cy

0 0 1


r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3



x3D

y3D

z3D

1

 (2-13)

Where (u, v) are coordinates in 2D pixels of the 3D point; (x3D, y3D, z3D) are the 3D co-
ordinates of the point in the world; (cx, cy) are coordinates of the image center; fx, fy are focal
lengths expressed in pixel units.

The matrix composed of cx, cy, fx, fy is called matrix of intrinsic parameters. This matrix
is proper for a camera and needs to be calculated only once. The joint rotation and translation
matrix are called the matrix of extrinsic parameters. It describes the relative motion between
the camera and the point. This section shows how to find intrinsic and extrinsic parameters of
the camera, knowing other vectors. But equation 2-13 will be used further reversely, to estimate
the 3D position of a marker into its corresponding 2D image. This is called Perspective-n-Point
(PnP) and can be resolved using different methods [62].

With z ̸= 0, one can write 2-13,

xy
z

 =

r11 r12 r13

r21 r22 r23

r31 r32 r33


x3D

y3D

z3D

+

t1t2
t3

 (2-14)

and

[
u

v

]
=

[
fx

fy

][
x′

y′

]
+

[
cx

cy

]
(2-15)

Where,

[
x′

y′

]
=

[
x
z
y
z

]
(2-16)

Radial distortion is the one known using a wide-angle camera as a ”fish-eye” effect. All
cameras are prompt to this effect with a different range. Radial and tangential distortion factor
have been modeled. One can thus re-write 2-15 to let appear coefficients,
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[
u

v

]
=

[
fx

fy

][
x′′

y′′

]
+

[
cx

cy

]
(2-17)

Where,

[
x′′

y′′

]
=

[
x′

y′

][
1+k1r2+k2r4+k3r6

1+k4r2+k5r4+k6r6
+ 2p1y

′

1+k1r2+k2r4+k3r6

1+k4r2+k5r4+k6r6
+ 2p2x

′

]
+

[
p2(r

2 + 2x′2)

p1(r
2 + 2y′2)

]
(2-18)

and r2 = x′2 + y′2 and 2-16. Thus k1, k2, k3, k4, k5, k6 are radial distortion coefficients ;
p1, p2 are tangential distortion coefficients. Higher order coefficients are not considered in this
study.

2.1.5 Convolution operation

This will also be used for the convolution neural network (CNN) explained further. Con-
volution operator is denoted ∗. It is a mathematical operation between two functions f and g

that shows how one is modified by the other. It is defined as the integral of the product of the
two functions after one is reversed and shifted.

(f ∗ g)(t) =
∫ +∞

−∞
f(τ)g(t− τ)dτ (2-19)

Or by commutativity,

(f ∗ g)(t) =
∫ +∞

−∞
f(t− τ)g(τ)dτ (2-20)

t doesn’t need to represent the time domain.

2.2 Neural Network

A neural network is a multi-layered decision system. Information is fed into the network,
then follows linearly and non-linearly transformations to make a final decision. Decades of
research have produced many different techniques, but these have increased these last couple
of decades. The better graphics processing unit (GPU) helped in this spread. The term ”neural
network” was chosen in attempts to find mathematical representations of information process-
ing in biological systems.

The functional form of the neural network provides a specific parameterization of the basis
function. Follows here, how to determine parameters of the network by maximum likelihood,
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this requires the technique of error backpropagation. Next is the regularization of neural network
training and the relation between them.

2.2.1 Feed Forward

In a neural network, feed-forward correspond to go from one layer to another, without
backward. We first construct M linear combinations of x1, x2, ..., xn input. The basic neural
network model has this form,

yi(x,w) = f(
D∑
i=1

wijxi + wj0) (2-21)

Where j = 1, 2..,M is the parameter of corresponding layer; wij is the weight; wj0 is the
biases; f activation function fixed during training.

This equation allows to be in simple linear regression problem. Then, two feedforward
networks can be presented,

• Single Layer Perceptron: This is the simplest feedforward network [63]. It won’t be
developed here because it is not used for CNN contrary to the next one.

• Multi Layer Perceptron: This has one or more hidden layers. It will be developed in the
section below.

Multi-perceptron layer

For the multi-perceptron layer, two layers are very popular architecture. In a layer, a biases
neuron needs to be added. Taking the previous equation, we can simplify it as follow,

{
aj =

M∑
i=1

w
(1)
ji xi + w

(1)
j0

zj = h(aj)

, j ∈ [1,M ] (2-22)

Where j is the output of the first layer; i is input; (1) is the layer number; for multilayer xi

become a function as equation (1).

Graphic representation

The graphic representation of the previous equation 2-22 is this one,

16



2 BASIC THEORY

Fig. 2-6 Network diagram for the two layer neural network

Three types of nodes present on the figure 2-6 exist for a feedforward neural network,

• Input Neuron: x = [x0, x1, ..., xD] provide information from outside into the network
and compose the input layer. There is no computation at this level, information just pass
through it.

• Hidden Neuron: z = [z0, z1, ..., zM ] has no link with outside, this is why it is ”hidden”.
Hidden layers are a collection of hidden neurons that links inputs to outputs.

• Output Neuron: y = [y1, ..., yk] make the output layer and transfer information from the
network to the outside.

The weight parameters are represented by links between the nodes, in which the bias pa-
rameters are denoted by links coming from additional input and hidden variables x0 and z0.
Arrows denote the direction of information flow through the network during forwarding prop-
agation.

Sometimes, for some input, a layer can be skipped, but this is not very often used. This
case is presented in the following figure 2-7,
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Fig. 2-7 Neural network diagram with hidden neurons

Hidden neurons decrease the complexity of the algorithm and make it more efficient. This
can be done with TensorFlow Python’s library.

2.2.2 Neural Network Training

After linking input vector x to output vector y with a function f . A simple analogy for
determining weightsw polynomial curve fitting. Here are presented twomain ways to minimize
the error function.

Curve Fitting

Therefore the error function has to be minimized, knowing target vectors tn,

E(w) =
1

2

N∑
i=1

∥y(xn, w)− tn∥2 (2-23)

To optimize linear regression, maximum likelihood function can be used, and it is equiva-
lent to minimize the sum of squares.

If a training set of independent observations is considered, then the error function, which
is given by the negative log-likelihood, is then a cross− entropy error function of the form,

E(w) = −
N∑
i=1

tnln(yn) + (1− tn)ln(1− yn) (2-24)

Parameter Optimization

From a geometrical point of view, it is equivalent to search,

∇E(w) = 0 (2-25)
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And this is the global minimum of a 3D function. The case is presented on the figure 2-8
below,

Fig. 2-8 Geometrical view of the error function E(w)

Fig. 2-8 shows wA as local minimum, while wB is the global minimum.

Activation Function

An activation function is a node, added the output of a layer or between two layers. Lit-
erature also calls it neuron or unit. It allows the output of the neural network to have resulting
values between 0 to 1 or -1 to 1. Some of them are more popular such as logistic sigmoid, tanh,
and ReLU . Activation function takes though a number to perform a mathematical operation
associated with.

Logistic Sigmoid or Sigmoid uses a real value x input to arrange it into the range [0,1],

σ(x) =
1

1 + exp−x
(2-26)

Hyperbolic Tangent or tanh uses a real value x input to arrange it into the range [-1,1],

tanh(x) = 2σ(2x)− 1 (2-27)

Rectified Linear Unit or ReLU uses a real value input and threshold negative values at zero,

f(x) = max(0, x) (2-28)

Following graphs inf figure 2-9 show each activation function,
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Fig. 2-9 Three different activation functions

Thus, for linear regression we use the sum of square error; for binary classification, we use
logistic sigmoid and cross-entropy; for multiclass classification, we use soft-max and cross-
entropy; and for CNN ReLU is traditionally more used.

Local Quadratic Approximation

For the optimization problem, we can consider a local quadratic approximation to the error
function. Then Hessian matrix is used after to consider the Taylor expansion of E(w) around
some point ŵ in weight space

E(w) = E(ŵ) + (w − ŵ)T b+
1

2
(w − ŵ)TH(w − ŵ) (2-29)

Where b is defined to be the gradient of E evaluated at ŵ; H is the Hessian matrix ∇∇ E;
E(ŵ) + (w − ŵ)T b; 1

2
is to eliminate terms when we derive.

It provides better performance but less stability, it sometimes results in oscillations.

2.2.3 Error Backpropagation

Error backpropagation is an efficient technique to evaluate the gradient of an error function
E(w) for a feed-forward neural network. It decreases the complexity of a model. The formula
provides is the following one,

δj = h′(aj)
∑
k

wkjδk (2-30)

This tells us that the value of δ for a particular hidden unit can be obtained by propagating
the δ’s backward from units higher up in the network,
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Fig. 2-10 Illustration of backpropagation

Illustration 2-10 of the calculation of δj for hidden unit j by backpropagation of the δ’s
from those units k to which unit j sends connections. The blue arrow denotes the direction
of information flow during forwarding propagation, and the red arrows indicate the backward
propagation of error information.

Thus backpropagation procedure can be applied as follow,

1. Apply an input vector xn to the network and forward propagate through the network to
find the activation of all the hidden and output units.

2. Evaluate the δk for all the output units

3. Backpropagate the δ’s to obtain δj for each hidden unit in the network.

4. Evaluate the required derivatives.

2.2.4 Regularization in Machine Learning

Principle of regularization

If the number of hidden value (zi) is too important it will have a problem of over-fitting.
Note that M controls the number of parameters of the network, and so we might expect that in a
maximum likelihood setting there will be an optimum value M that gives the best performance,
corresponding to the optimum balance between under-fitting and over-fitting. An illustration
of the phenomenon follows,

Fig. 2-11 Sinusoidal approximation with regularization term and different hidden units (M=1,3,10)
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Figure 2-11 is an example of two-layer networks trained on 10 data points drawn from
a noisy sinusoidal. The graphs show the result of fitting networks having M = 1, 3, and
10 hidden units, respectively, by minimizing a sum-of-squares error function using a scaled
conjugate-gradient algorithm.

Invariances

In many applications of pattern recognition, the prediction has to give the same result. For
instance, a building even reversed, is also a building: rotation invariance. Also position and
size need not to influence result : respectively translation invariance and rotation invariance.
A way to implement it is to feed the neural network algorithm the invariant that we want.

2.2.5 Convolutional Neural Network

Convolutional Neural Network (CNN) is a type of multi-layer neural networks. Like al-
most every other neural networks they are trained with a version of the back-propagation algo-
rithm. They differ in the architecture and are often resumed as in figure 2-12,

Fig. 2-12 Typical CNN architecture

Convolutional Neural Networks are designed to recognize visual patterns directly from
pixel images with minimal pre-processing. They can recognize patterns with extreme variabil-
ity (such as handwritten characters), and with robustness to distortions and simple geometric
transformations.

Convolution Step

Convolution allows extracting features from an input image. It consists to apply the filter
as explained in the section above.
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2.3 Drone Model

This section presents the tools used to control the drone. It begins with the choice of the
appropriate coordinate system. Then the PID control theory is formulated. Finally, the optimal
estimator used for the thesis is detailed.

2.3.1 Coordinate Systems

This paper mix different fields that have defined different reference frames. Each system
has its frame that is presented succinctly:

• The tag reference frame is attached to the landing pad. It is direct oriented frame with x-
axis pointing right, y-axis pointing front-ward and z-axis pointing up-ward. It is presented
in figure 2-13a.

• The camera reference frame is centred into camera optical center. It has z-axis going out
the camera, x-axis going right and y-axis going down-ward. It is shown in figure 2-13b.

• The drone body frame use FLU (Front-Left-Up) convention, where x-axis point front-
ward, y-axis point the left and z-axis point up-ward. The reference frame is presented in
figure 2-13c.

• The world reference frame use the ENU (East-North-Up) convention. Here x-axis point
the East, y-axis point the North and z-axis point up-ward. The coordinate system is visible
in figure 2-13d.

All the coordinate system used in the thesis are shown in the following figure,

(a) Marker
reference frame

(b) Camera
reference frame

(c) FLU
reference frame

(d) ENU
reference frame

Fig. 2-13 Convention of the reference frames

One can notice on 2-13 that the Marker coordinate system 2-13a and the world (ENU) co-
ordinate system has the same definition. The thesis will mingle both having the ENU reference
frame in the center, with the same orientation, of the Marker reference frame. Then the change
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between reference frames is done using rotation matrix and translation vector. Assuming a gen-
eral rotation where Euler angles α, β and γ are respectively rotations around axis z, y and x.
Thus one can find,

R = Rz(γ)Ry(β)Rx(α) =

cos(γ) −sin(γ) 0

sin(γ) cos(γ) 0

0 0 1


 cos(β) 0 sin(β)

0 1 0

−sin(β) 0 cos(β)


1 0 0

0 cos(α) −sin(α)

0 sin(α) cos(α)


(2-31)

R =

cos(γ)cos(β) cos(γ)sin(β)sin(α)− sin(γ)cos(α) cos(γ)sin(β)cos(α) + sin(γ)sin(α)

sin(γ)cos(β) sin(γ)sin(β)sin(α) + cos(γ)cos(α) sin(γ)sin(β)cos(α)− cos(γ)sin(α)

−sin(β) cos(β)sin(α) cos(β)cos(α)


(2-32)

Always assuming the pinhole camera model introduced for camera calibration, previous
equations for perspective correction (2-18 and 2-13) can now be reversed for pose estimation.
The concept of homography in computer vision is the generic name of transformation between
two planes. More detailed explanations can be founded in [64] and [65].

2.3.2 PID Principle

The Proportional–Integral–Derivative (PID) controller is a control loop mechanism with
feedback widely used in control systems. It calculates error e(t) between the desired set-point
pd(t) and the measured variable p(t), and applies a proportionalKp, integralKi and derivative
Kd correction. For an output u(t) the formulation is though following equation 2-33,

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
de(t)

dt
(2-33)

WhereKp, Ki andKd are all non-negative coefficients.

In following sections, the time dependency will not be necessarily denoted. For instance,
the reader will find u for u(t).

2.3.3 Kalman Filter Principle

A KF is an optimal estimation algorithm. It allows estimating a variable from indirect
measurement. In the presence of noisy measurements, parameters of interest such as location,
speed, and direction are predicted. Common applications of Kalman filters include guidance
and navigation systems, computer vision systems, and signal processing. The first applications
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of the KF were for instance used for the Apollo project. Trajectories of the manned spacecraft
to the moon and back were though estimated.

KF is used for different reasons:

• Only indirect measurements allow access to variables of interest.

• Various sensors provide the measurement but might be subject to noise.

The KF is a recursive filter that estimates the internal state of a linear dynamic system
from a series of noisy measurements. It is used for the discrete system. To estimate the current
state, only previous state measurement and current measurements are needed. No history of
estimation and observation are required.

State of the filter is thus represented with two variables:

• x̂k|k : estimate of x(k) given measurement at time k

• Pk|k : error covariance matrix of the state estimate at time k

There are two distinct phases for KF: prediction and update.

Prediction

The predict phase uses the previous timestep to find an estimated state at the current
timestep. Prediction state estimation is also known as a priori state. It doesn’t include ob-
servation of the current state.

A priori state estimate

x̂k|k−1 = Fkx̂k−1|k−1 +Bkuk−1 (2-34)

A priori error covariance

Pk|k−1 = FkPk−1|k−1F
T
k +Qk (2-35)

Where x̂k|k is a posteriori state estimate at time k, given observations at time k; uk is the
command entry; Pk|k−1 is a posteriori error covariance matrix; Fk is the state transition model
from k − 1 to k; Qk is the covariance of the process noise; and Bk is the control-input model
which link command u to state x.

Update

The update phase combines a priori prediction with current measurement to improve state
estimate. This estimated combination is a posteriori state estimation.

Innovation
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ỹk = zk −Hkx̂k|k−1 (2-36)

Innovation covariance

Sk = HkPk|k−1H
T
k +Rk (2-37)

Optimal Kalman gain

Kk = Pk|k−1H
T
k S

−1
k (2-38)

A posteriori state estimate

x̂k|k = x̂k|k−1 +Kkỹk (2-39)

A posteriori covariance estimate

Pk|k = (I −KkHk)Pk|k−1 (2-40)

Measurement post-fit residual

ỹk|k = zk −Hkx̂k|k (2-41)

Where zk is the observation or measurement at time k; Rk is the covariance of the obser-
vation noise; Hk is the observation model that maps true state xk into observed state zk; Pk|k is
a posterior estimate covariance matrix; and I is the identity matrix.

2.4 Mechanical Gear

2.4.1 Hybrid System

For the air to ground transition, the model hybrid dynamic system will be used. It mixes
continuous dynamics and discrete events with interaction and changes between each. The drone
is assumed as point-mass starting the fall with an initial speed v0 and an initial height h. It
bounces off the ground and dissipates its energy bounce after bounce. As inelastic collision,
each impact makes a discrete change to the velocity where the falling equation switches to the
damped harmonic oscillator.

Hypothesis

• Ground doesn’t absorb energy.

• Magnus effect and buoyancy are neglected.
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• Object is an undeformable solid.

To lighten the write, dot notations will be used,

a =
dv

dt
=

d2y

dt2
⇔ a = v̇ = ÿ (2-42)

v =
dy

dt
⇔ v = ẏ (2-43)

Where a is acceleration inm.s−2; v is velocity inm.s−1; y is position inm; t is time in s.

Fall Object Equation A falling object obeys to projectile motion. According to Newton’s
second law,

∑
F = ma (2-44)

Wherem is mass of the object in kg.

FG + FD + FT = ma = mv̇ = mÿ (2-45)

Forces applied to the system are,

• Gravity: Force-directed downward and accelerate the object to the ground.

FG = mg (2-46)

• Drag: Viscous resistance that slows down a moving object. For relatively low speed,
without turbulence, Reynolds number is less than 1. In this case, drag is linear and op-
posed to the movement.

FD = −bv (2-47)

Where b is a constant that depends on fluid properties and object dimensions

• Thrust: Motor force is given by the propellers of the drone. Much complex aerodynamic
turbulence is generated but not studied. Here is the result of the thrust vector.

FT = N (2-48)

N is the thrust vector in N .

The system has though position x and velocity v as continuous states. The hybrid system
aspect comes from impact with the ground.
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Collision Equation At object landing, internal deformation makes it bounce. This elasticity is
modeled by an oscillator that responds proportionally to the length of deformation. Besides, a
frictional force makes decreases amplitude of oscillation with a viscous damping coefficient. It
is proportional to velocity. According to Newton’s second law, one can write,

F = −ky − cẏ = mÿ (2-49)

Where k is elastic coefficient; c is viscous damping coefficient.

This is known as the equation of a damped harmonic oscillator. It is often written as well,

ÿ + 2λẏ + ω2
0y = 0 (2-50)

Where ω0 =
√

k
m
is the undamped angular frequency in rad.s−1; λ is damping coefficient in

rad.s−1 It will be used when the drone will be in contact with the ground.

A bouncing object points out the Zeno phenomenon. This problem occurs when an infinite
event like switches happens in a finite amount of time. This makes simulations to crash and
highlights the fact that the model is inaccurate. In this case, the falling object should bounce a
finite amount of time, not infinitely. Each time the object impacts the ground, the loss of energy
makes the jump weaker and the object closer.

2.4.2 Mechanical Linkage

A table of mechanical linkage presents all theoretical connections in a mechanism. This
also normalizes items to read kinematic draws.

2.4.3 Compliant Kinematic

Flexure-based compliant materials are used for precision engineering and robotics. It takes
advantage of no friction, no backlash, and minimal assembly requirement. For this study, the
third points draw our attention. According to [58], the drawback of the compliant mechanism
is the coupling of kinematic-mechanics with serial-parallel configuration, in comparison with a
rigid-bodymechanism. A first approach is to replace rigid pivot link (Fig. 2-14a) by a compliant
hinge (2-14b).
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(a) Rigid hinge (b) Flexure hinge

Fig. 2-14 Conceptual comparison between rigid and compliant hinges [58]

Then serial-parallel mechanism can be presented out of two following class,

(a) Rigid-body mech-
anism

(b) Fully compliant mecha-
nism

Fig. 2-15 Conceptual comparison between rigid and compliant mechanisms [58]

A rigid body mechanism (Fig. 2-15a) is transformed into a compliant mechanism (Fig.
2-15b) with the switch of rigid hinges to flexure hinges. For a compliant mechanism, the hinge
is thus done with section reduction of the beam. Different shape exists.

(a) Right-circular (b) Hyperbolic (c) Elliptic (d) Circular

Fig. 2-16 Typical notch flexure hinges [58]

These shapes examples have substantially the same effects on the hinge.

2.4.4 Four-Bar Linkage Theory

Four-bar linkage is the simplest movable closed chain linkage [66]. Connected in a loop,
it has four joints of one Degree Of Freedom (DOF). Planar four-bar linkage is an important
mechanism for machines. Kinematics and dynamics of these mechanisms are widely studied
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for a variety of movement in mechanical engineering like the ones presented in the following
figure 2-17,

Fig. 2-17 Types of four-bar linkages. s is the shortest link and l the longer link [67]

Quadrilateral linkage configuration can though be classified into three types: convex, con-
cave and crossing. This last one has two links that cross each other. The convex linkage has all
its four angles less than 180◦, whereas the concave case has one angle greater than 180◦. The
relationship between the lengths of the two diagonals of the quadrilateral can be found [68]. For
convex and crossing configuration, the length of one diagonal increases if and only if the other
diagonal decreases. While for nonconvex non-crossing linkages, one diagonal increases if and
only if the other also increases.

2.4.5 Friction Theory

Friction is the force that resists to the relative motion of an object into a solid surface or a
fluid. Friction has been widely studied from antiquity. It converts kinetic energy into heat so
friction is a non-conservative force. This thesis takes interest in three types of friction:

• Dry friction for two solid surfaces in contact. It is composed of static friction for two
non-moving solids and kinetic friction for two moving surfaces.

• Fluid friction is the force opposed to an object that moves into a viscous fluid [69].

• Lubricated friction mixes the two previous friction. A fluid called lubricant is between
two layers of solid surfaces [70].

The dry friction is governed byCoulomb’s Law of Frictionwhich is an approximate model,

Ff ≤ µFn (2-51)

Where Ff is the friction force that is parallel to the surface and opposed to movement; µ
is the coefficient of friction; Fn is the normal force applied on each surface.

The coefficient of friction µ is empirical and can be found on tables. It depends on the
material and the asperities of the two surfaces.
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The static friction coefficient µs is generally higher than the coefficient of kinetic friction.
There is a maximum force Fmax to reach, to begin the slide of one surface onto another,

Fmax = µsFn (2-52)

Any force applied to a static solid inferior to Fmax let it at its place. Until Fmax is exceed,
kinetic friction starts. For a given dry friction, the lubrication reduces friction effects.

The fluid friction, on the other hand, is proportional to the speed. It has been presented as
a drag in 2-47.
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3 Drone Perception

In this chapter different landing pad areas are presented. It begins with the state of the art
standard marker detection and follows with proposed neural network (NN) landing pad position
estimator.

3.1 Standard Fiducial Marker

Presently, a wide number of different fiducial markers exist. The more commonly known
markers are ARToolKit, ARTag, AprilTag, InterSense, or ArUco, however, the most common
marker is the QR-Code. These markers have many applications for augmented reality due to
the ease of usage. All of these markers consist of a black and white contrasted shape and an
embedded simple binary code that allows tag recognition so that one tag can be differentiated
from another.

3.1.1 Marker Detection

The method of finding a marker in an image is presented in this section and uses the
OpenCV ArUco library [71]. First, the RGB (Red Green Blue) captured image is converted
into a gray-scale image. An adaptive threshold enhances contours and searches for a continu-
ous border. To detect and extract a square vertex, the ArUco library uses the algorithm presented
in [72]. Only the most promising shapes that contain a readable tag are kept for the next stage.

An ArUco tag consists of a squared matrix containing black and white tiles. Each tag has
a 5 by 5, circled in blue in 3-1b grid with a coded 10-bit number. The maximum number-coded
is 210 = 1024. For example, the number 7 is coded as follows,

(a) ArUco tag 7 (b) Grids values

Fig. 3-1 ArUco 7 with corresponding grids value

The same principle of detection is applied for a fractal ArUco marker (Fig. 3-2) that has
more a simplified shape.
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Fig. 3-2 Fractal marker with 0 for the outer square and 1 for the inner square

Each ArUco marker tag is thus identified with a value and a 2D position of its corners. The
position of the four corners is then used to estimate the camera position relative to the marker.

3.1.2 Pose Estimation

After the detection of an ArUco marker respective to the imaging unit, its localization can
resultantly be measured. Calibration can provide the intrinsic and extrinsic parameters of the
camera, which are used in the following equation 2-13. It can be resolved as a Perspective-n-
Point (PnP) problem presented in 2.1.4. OpenCV provides solvePnP() function, based on [73]
that gives a rotation vector and translation vector of a squared marker of the side measurements
d in a camera frame 2-13b. The four given coplanar corner coordinates P are defined in the
following order,

P0 = [−d

2
,
d

2
, 0] ; P1 = [

d

2
,
d

2
, 0] ; P2 = [

d

2
,−d

2
, 0] ; P3 = [−d

2
,−d

2
, 0] (3-1)

The result of the PnP problem is a rotation vector and a translation vector. The rotation
vector is transformed into rotation matrix using Rodrigues transformation. The measured pose
on the camera coordinate system can though be transformed into the world coordinate system.
The rotation matrix and the translation vector are augmented in a homogeneous transformation
matrix. This 3by4 matrix that transforms the 3D point from the camera frame to the world
position,


Xc

Yc

Zc

1

 =

r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3



Xw

Yw

Zw

1

 (3-2)

Thus, pose estimation with image processing of marker localization can be summarized in
this process diagram 3-3,
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Fig. 3-3 Fiducial marker localization algorithm

After capturing the image, it is converted into a gray-scale image. The adaptive thresh-
old allows working with the image having different lighting conditions in different areas. A
threshold is applied to the pixel’s neighbors of small areas.

Fig. 3-4 Comparison of global thresholding and adaptive thresholding for a landing pad in the simulation

In the case of simulation, because there is no variation of the illumination, and as seen
in figure 3-4 the global threshold could have been sufficient. So even if this takes more time
than a simple threshold, it is more robust to noise. Then the square shape detection is done by
segmentation and contour detection. The decoding of the fiducial allows here to differentiate a
random square from theArUcomarker. The homography projection permit finally to express the
2D measured position into the world coordinate system. This gives though the marker positions
of figure 3-5,
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(a) ArUco marker processed position in movement (b) ArUco marker processed position in static

Fig. 3-5 Processed ArUco position with visual reference frame drawing

The ArUco pose estimation is relatively fast and accurate, but for a fast approach, the
calculation needs to reach real-time. Recent advancements using virtual neural networks for
machine vision showed an improvement in data processing velocity and estimation accuracy.

3.2 Deep Learning Localization

DuringWorldWar II, an American behaviorist B.F. Skinner’s attempt to develop a pigeon-
controlled guided-missile [74]. the Project Pigeon was later renamed Project Orcon for ”or-
ganic control”. They were trained to tap on a specific screen with their beak to adjust rocket
trajectory. Even if animal intuition for pose estimation was a novel usage method, eccentricity,
and impracticality to use real birds explained the end of this research. The recent improvement
in computer science with machine learning provides a new point of view surrounding this work
using a virtual NN instead of living animals.

Classic image processing uses a lot of computing resources and is struggling to reach real-
time. The proposed method will use state of the art Convolutional Neural Network (CNN) to
compute regression and extract marker localization.

For supervised learning NN, a data set is needed. This will be used to train the NN to
predict drone positions from a picture. An image of the landing pad will be associated with the
corresponding homogeneous transformation matrix. The dataset will be composed of localiza-
tion coordinates with the image of the associated landing pad.
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3.2.1 Dataset Generation

Drone localization has a meter accuracy with GPS. Datasets will need to be more accu-
rate to predict a better measurement estimation from the algorithm. It is possible to localize an
indoor drone with motion capture technology. Present drawbacks that remain with the milli-
metric measurement tool are that they are expensive and difficult to use outside of a lab. For
these two reasons, a cheap technique is often used. Moreover, the use of a simple camera, ro-
bust to crashes, is theoretically sufficient thanks to the amount of data provided. The recent
NN techniques give low computer consumption for impressive visual processing. Thus, pose
estimation and awareness of the surrounding world can find a solution using cheap sensors and
a well trained NN.

A dataset is needed for supervised learning and the thesis proposes to use 3D software. In
the case of parameter changes during the study such as pattern, size, and positions, the virtual
generation provides more flexibility. A first try to generate dataset by hand is increasingly too
time-consuming and not reliable, that’s why the proposed method uses an automatic generator.

The following method presents a generation of the dataset needed to train the NN. This
combined an image and an associated file with 6 Degree Of Freedom (DOF) localization.

Landing Pad

A first study using ArUco provided a successful result. The dataset will be inspired by
these black and white patterns. It is relatively easy to extract the object from the picture with
grey level filters and threshold enhancement.

Three points are the minimum number necessary to localize a 3D plane in the space. A
redundancy of points with more than three increases precision of estimation. The pattern needs
to resemble a triangle. An ”L” shape is the main image of the landing pad. The asymmetry of
the shape is created with a catted edge. The center of the area is specified with a circle. The
redundancy of points is designed with the smaller symmetric ”L” to ensure reliability.

Fig. 3-6 Landing pad pattern

The shape of figure 3-6 is thus a proposed picture for the landing pad. Then the range value
of the possible drone 3D position needs to be set.

36



3 DRONE PERCEPTION

Positions

The range of values is determined by moving the camera around. When the landing pad
just has the view field, an extreme position is there. The range of altitude z ∈ [0.3; 50]. Then,

• for z = 0.3, x ∈ [−0.6, 0.6] and y ∈ [−0.55, 0.55] ;

• for z = 50, x ∈ [−18.4, 18.4] and y ∈ [−10.4, 10.4].

For a given z altitude, a boundary linear equation can be applied as follows,

x = mxz + px (3-3)

and
y = myz + py (3-4)

where
mx =

xmax − xmin

zmax − zmin

; px = xmin −mxzmin (3-5)

and
my =

ymax − ymin

zmax − zmin

; py = ymin −myzmin (3-6)

from which positive boundaries equations with 10−4 accuracy are

x = 0.3581z + 0.4926 (3-7)

and
y = 0.1982z + 0.4905 (3-8)

Negative boundary equations are the opposite of the previous ones and permit a range of values
from negative to positive ones.

The following figure in blue shows the limit area where the camera position is chosen.
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Fig. 3-7 Field of camera position, with camera point of view for interesting areas

The scale of the blue area compared to the landing pad is of course not respected on the
previous figure 3-7. The point of view of the camera on these extreme positions is showed
below,

(a) Image (1) (b) Image (2) (c) Image (3) (d) Image (4)

Fig. 3-8 Side images of the dataset

The contours of the landing pad are enhanced in orange at the end of the orange arrow
for better visibility. The extreme images like 3-8c, 3-8d should allow the NN to estimate the
landing area position when the marker enters the field of view. Then for the entire dataset, the
position of the camera is distributed homogeneously and randomly in this area. Follows im-
ages on figure 3-9 of the positions that the drone could have,
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(a) img_0 (b) img_1 (c) img_2 (d) img_3 (e) img_4

(f) img_5 (g) img_6 (h) img_7 (i) img_8 (j) img_9

Fig. 3-9 Images positions randomly generated

To simulate drone pose relative to the landing pad, rotation needs to be added to the drone
position.

Rotation

An analog data generator of the position one can be used. It allows the NN to estimate
rotation between the marker and the drone. Rotation between the drone and the ground is not
essential. Most of the autonomous drone landing algorithms only calculate the center of the
landing pad, because it is assumed to be completely flat. The use of the rotation matrix will be
explained in the Guidance and Control section.

Some extreme rotation will not be possible during the use of the drone. For instance, the
pad will be always visible from the front, that’s why the following range of rotations is proposed.
The notations are according to camera reference frame 2-13b,

• for the pitch: rx ∈ [−π
4
, π
4
] ;

• for the roll: ry ∈ [−π
4
, π
4
] ;

• for the yaw: rz ∈ [−π, π].

To ease the generation of the dataset and to be sure that the landing pad is always on the
field of view of the camera, instead of rotating the camera, the marker has the rotation. To be
explained on the camera reference frame, from Blender, the vector rotation simply needs to be
explained as its opposite.
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Fig. 3-10 Rotation enabled of the landing pad, with camera looking the area

The camera is represented with the black polygon on 3-10. In red is the rotation around
x-axis, in green rotation around y-axis, and in blue rotation around z-axis. Then the rotations
generated by the algorithm follows on ten images examples. The camera is fixed at the (0, 0, 4)
position and uniform rotations are set,

(a) img_r0 (b) img_r1 (c) img_r2 (d) img_r3 (e) img_r4

(f) img_r5 (g) img_r6 (h) img_r7 (i) img_r8 (j) img_r9

Fig. 3-11 Images rotations randomly generated

After having explained all the views of the drone with positions and rotations, the presen-
tation of the useful data follows.

Dataset Shape

After all, the dataset generator can provide position and rotation of the marker, relatively
to the camera. For the exercise presented in Chapter 4, the dataset proposed is composed of
images and drone positions relative to the marker frame. Using opposite coordinates, the given
position is thus the target point of the drone.
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For a first try, as shown so far, the background is set completely uniform. This type of
image can easily be reached with visual processing. as mentioned before. The pose data are
finally saved in a csv file for the proposed implementation. Thus, the drone position is given in
the FLU reference frame 2-13c of the drone but projected on the marker reference frame 2-13a.
So the dataset csv file has the following information,

• Integer number that associate one image to the drone pose;

• x distance in meter of the marker relative to the drone;

• y distance in meter of the marker relative to the drone;

• Altitude z in meter of the drone relative to the marker;

• Yaw rz of the drone relative to the marker.

In short, the position is given by the dataset in the horizontal direction that will be directly
translated with the control part into the velocity vector. Furthermore, an extract of the images
from the data set is shown below,

(a) image_0 (b) image_1 (c) image_2 (d) image_3 (e) image_4

(f) image_5 (g) image_6 (h) image_7 (i) image_8 (j) image_9

Fig. 3-12 Images pose, composed of position and rotation randomly generated

These images are a screenshot from the virtual camera saved in PNG format. The virtual
dataset generated with a simple background is then used to train the NN to localize the drone in
space.

3.2.2 Neural Network

The use of an NN instead of a standard marker detection bypasses different steps in the
localization algorithm.
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Fig. 3-13 NN algorithm for landing pad detection compared to standard marker detection

The learning approach aims on diagram 3-13 is to reactively estimate the landing pad posi-
tion using the drone camera facing downward. The pose is later converted into a drone control
command that enables the drone to descend with the expected strategy.

Convolutional Neural Network

The Convolutional Neural Network (CNN) architecture has two branches to predict the
horizontal position of the drone. Since some tests have presented difficulties when calculating
the drone altitude in the NN, this is calculated separately with a second NN containing the same
architecture but trained with fewer epochs. The prediction of the linear value instead of the
standard classification is called regression. It is done with a linear activation neuron at the end
of the NN.

The NN proposed architecture has been found to provide sufficient results. A different
number of layers and neurons by layer have been tried. This is mainly inspired by [30].
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Fig. 3-14 CNN proposed architecture

The same NN architecture proposed in figure 3-14 is used to predict x and y position and
runs in parallel. The split is done at the entry of the NN, where a unique image feeds the network.
Then the horizontal drone position in the marker coordinate system is given as an output.

Training

Before being used, the NN needs to be trained, thus datas are preprocessed to suit better
learning. Datas are first normalized between [0, 1] to improve result of training within the lay-
ers. The learning progress of the NN can be observed with the average loss over the training
data. The loss is calculated as the mean absolute percentage error equation over the data.

M =
1

n

n∑
t=1

|Tt −Mt

Tt

|100 (3-9)

Where n is the number of data, Tt is true value andMt is the measured value.

The analysis of the training focuses on the horizontal (x, y) position, which will be used
for drone control. Without specifically knowing drone attitude the projected position 4-4 on the
marker reference frame is estimated by the NN.
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Fig. 3-15 History of the loss of x and y during training

The learning stage has been performed on 140 epochs with a batch size of 16, and with 1980
train images and 100 test images. The number of batches facilities the independent process in
parallel with the training of the model. The batch generally approximates the distribution of
the input data better than a single input. The larger the batch size, the better the approximation.
However, this depends on the memory of the computer. Therefore, the proposed 16 batch size
was the largest size supported by the computer used.

The loss and val_loss plotted on figure 3-15 differs where the loss is calculated over all
of the training data, whereas val_loss is the same cost function measured on the training dataset
using a test dataset. Over-fitting is observable when the val_loss goes over the loss. For x po-
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sition measurement, learning is at the limit of over-fitting while the y position prediction could
still learn could a little even at the end of the training.

The position range is the one presented in the equations 3-7 and 3-8. The learning of the
NN is observable with the diminution of the loss between the predicted data and the ones which
are used for the training. The loss is calculated using the mean absolute percentage error. An
over-fitting has been observed for 190 epochs on x position prediction, that is why 140 training
epochs are proposed.

Prediction

Using the gradient-weighted activation mapping also called Gradient-weighted Class Acti-
vationMapping [75] (Grad-CAM), it is possible to observe an image where the CNN is looking.
The TensorF low implementation of this method finds the final convolutional layer of the NN
and examine the gradient information. To understand data, a heatmap using viridis standard
scale is displayed.

An activated part of the image corresponds to yellow pixel of the activation map, while a
non-active part of the image corresponds to a deepblue pixel.

Fig. 3-16 Centered landing pad with Grad-CAM

This activation map visible on figure 3-16 shows that the main information of the landing
pad for the proposed NN is the large ”L” shape of the marker design. Most of the activated
pixels are on the position of the landing pad.
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Fig. 3-17 On the edge landing pad with Grad-CAM

Even with a not centered on Fig. 3-17 landing pad position, the activation pixels follow
the marker.

Fig. 3-18 Only background with Grad-CAM

Then the use of the background as an input for prediction shows on figure 3-18 an extended
activation area. This kind of image has not been used for the training and the NN activated its
neurons especially on the right and left edges of the image, at the expense of the lower and outer
borders. The effect of having a simple background for the training and a more complex one for
the implementation seems to have a small effect on the landing pad pose estimation.

3.3 Comparison results

The accuracy is estimated by calculating the percentage error measurement between the
real value and the measured one. Even if the loss is usually a measurement of data quality,
the definition given by the equation 3-9 is the same as the error but is given in the range [0, 1]
instead of a percentage,

Xerror =
|experimental value − theoretical value|

|theoretical value|
(3-10)

Considering the measurement is following a Gaussian distribution, the reader will pay at-
tention to the accuracy corresponding to the mean and precision corresponding to the standard
deviation.
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For the experimentation, random marker positions are generated with the previously pro-
posed generator. The marker shape is changed to suit the detection algorithm, but the marker
size and the position range is maintained. Before the experiment, the generator provided some
images with hidden markers, which would not be recognized with ArUco detection.

Graphs are plotted with the true landing pad position sorted for more visibility. This does
not reflect the real randommeasurement, but makes the result more comprehensive to the reader.

Fig. 3-19 x position ArUco measurement

Position x on camera coordinate system looks on figure 3-19 a little bit underestimate with
measured pose under the true marker pose. A small side effect seems observable around −8m

where data have a meter accuracy. On the measurement, the true range is [−6.056, 8.251].

Fig. 3-20 y position ArUco measurement

On y axis the measured positions visible on Fig. 3-20 are more accurate near the pose
0. The side effect shows an overestimation of the real value, where the measured value has a
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bigger absolute amplitude than the true pose. The measurement interval is not symmetrical and
is [−3.864, 6.861].

Fig. 3-21 z position ArUco measurement

Then the z position measurement of figure 3-21 is more dispersed on both sides of the mea-
surement. Fewer values under 10m altitude has been measured and the range is [2.896, 32.275].
The ArUco measurement is more accurate in a horizontal position than on vertical values. Al-
titude measurement has more noise for higher altitude.

The fractal ArUco marker has scaled fiducial markers inside its shape 1-2d. It is supposed
to correct the relatively small range of ArUco measurement and to increase the interval.

Fig. 3-22 x position fractal measurement

The measurement in Fig. 3-22 looks often accurate and has fewer mistakes on negative
measurement than positive measurements. On the right side of the graph, more noisy measure-
ment has been done. The range is [−3.356, 6.973], but can be reduced if the false upper value
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is removed from the result.

Fig. 3-23 y position fractal measurement

On the y axis of the camera, the same result than on y is observable on the graph of the
figure 3-23, where there is more noise for positive measurement. Thus the visible range is
[−1.743, 7.857] but the upper false-positive value could be removed.

Fig. 3-24 z position fractal measurement

For the vertical measurement observable on the figure 3-24 above, apart from three values
on low altitude, the near ground measurement is more accurate than the farthest. The mea-
surement range on z axis is then [2.424, 41.060]. With the same problem notice previously, the
upper value can be divided per two if the false-positive measurement is removed. On another
hand, the proposed NN should recognize marker position in a wider range.
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Fig. 3-25 x position NN measurement

On x − axis pose estimation, the measurements near to the center of the frame shows in
Fig. 3-25 a lack of accuracy and a jump from the positive measures to the negative measures.
Absolute measurement amplitude looks larger than the real marker pose, except for marker
position upper to 7m.

Fig. 3-26 y position NN measurement

Almost the same remarks on y− axis could be done than on the x− axis, because global
measurement curve has the same shape on the figure 3-26. Negative values are overestimated
as positive values until the 4m where the position is underestimated.
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Fig. 3-27 z position NN measurement

Then for vertical measurement, pose estimation looks very accurate on figure 3-27 for
near ground altitude. Under 5m the estimated position follows almost perfectly the true posi-
tion. However, there is a bias in the altitude measurement over 10m where the estimation is 10
meters higher than the true position. Moreover, the global accuracy decreases with an increased
height because the measured points are more scattered.

In the different measurements above, the range of the horizontal vision is more important
for traditional ArUco detection markers than for fractal markers. Without the false-positive
measurement on the z − axis, the ArUco marker measurement altitude is 10m higher than the
fractal marker. But the fractal measurement can estimate the near ground camera position 40

centimeters closer, until 2.4 meters. There are side effects for high altitude measurement of
all detectors and for horizontal marker measurement of the NN. The position estimation is less
accurate and the result is incorrect.

The table 3-1 follows a comparison of estimated position errors with the three different
techniques.

Tab. 3-1 Experimental table of the landing accuracy of three computer vision algorithms

Algorithm xerror (µ, σ2) yerror (µ, σ2) zerror (µ, σ2) Number of data

ArUco (0.470, 1.225) (0.174, 0.425) (0.075, 0.043) 46
Fractal (0.615, 1.587) (0.491, 1.012) (0.200, 0.494) 38
Proposed NN (0.143, 0.091) (0.125, 0.112) (0.627, 0.295) 100

The proposed NN is the most accurate position estimator of horizontal measures. Even
though the ArUco estimation on y has the same error, the NN has a smaller standard deviation

51



西北工业大学硕士学位论文

and a more precise result. The estimation posed by ArUco is measured almost three times more
accurately on the x axis than on the y axis. However, the vertical measurement is almost 10
times more accurate for ArUco marker than for the NN, and almost three times more accurate
for ArUco marker than for fractal pose estimation.

In the 200 images used for ArUco and the fractal marker, less than a quarter of the images
were usable. This means that the field of view of these traditional monocular pose estimators
can be used in a narrower field of view. In this experiment, the global position accuracy provides
an overview of the expected results on drone position measurement. Although, this does not
provide accuracy surrounding drone landing as this depends on the way it is implemented.
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4 Guidance and Control

The all Guidance Navigation Control (GNC) is setup with the following tools:

• Ubuntu 18.04

• Gazebo 9

• ROS melodic

• PX4 Master (on 02/28/2020)

• OpenCV 4.2.0

• QGroundControl

These software are presented in the section bellow.

4.1 Drone Simulator

At first, the idea was to use AirSim, a powerful simulator for machine vision, which was
based on the Unreal Engine game engine. It is well acclaimed for game conception because is
allows real-time realistic rendering. Texture in the Unreal Engine so closely mirrors the reality
that it now uses as background in movies, more specifically when used by the Industrial Light
and Magic company for The Mandalorian movie. The main problem surrounding its usage is
the excessive amount of computing power needed, and for this reason, an alternative simulator
was chosen. The Gazebo simulator was used for this study as it consumes relatively low power
and is a widely used simulator for autonomous vision-based drones. Generally, the use of a
simulator is a safe and efficient way to confirm system functionality before real-world tests.
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The environment is set up with a ground texture resembling a stone-paved floor visible on
figure 4-1. Two objects are added to a standard drone simulation: a fixed camera facing done
and an ArUco marker. As explained below, the camera emits a ROS topic that can be viewed
on the simulator.

Fig. 4-1 Gazebo setup for simulation with embed camera view

With the presented configuration on Fig. 4-2, at the time when the thesis was being writ-
ten, the UDP communication video was not possible. The only functional way to receive video
was to use ROS (Robot Operating System) wrap and the cv_bridge. ROS is a robotics library
that can be used easily with PX4 for offboard control. Its principle is to link publisher topics
to subscriber. It uses the MAVROS node to communicate with Gazebo Simulator. MAVROS
is the MAVLink extendable communication node for ROS with a proxy for Ground Control
Station (GCS). MAVLink for Micro Air Vehicle Link is a very lightweight protocol for drone
communication. The topic cv_bridge is the specific MAVROS video link and is published by
Gazebo. It gives access to a camera model generated on the simulator that transmits the video.
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Fig. 4-2 PX4 SITL overview integration

All of the unmentioned settings are provided in the PX4-Gazebo documentation installa-
tion.

4.2 Autopilot Presentation

PX4 is the firmware of an open-source autopilot system. It allows an aircraft to be piloted
remotely without human intervention. The Pixhawk hardware is the flight control (FC) that
embeds the PX4 firmware. The hardware and software are then available to anyone under an
open-source BSD license. This license gives anyone the ability to fork the software and use it
for industrial purposes.

PX4 running into the Pixhawk is simulated with this integration Fig. 4-2 as SITL. The
autopilot behaves exactly as if it were running on the actual Pixhawk FC. Additionally, the
command from the GCS can be sent to the drone, and feedback such as position, are visible on
the screen. The purpose of having a near-reality simulation is the capacity to transition more
easily to real-world applications.
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The autopilot allows an offboard mode to control the UAV with an external program. The
figure 4-3 below represents an implementation overview of the drone velocity control using
image pose estimation,

Fig. 4-3 Enlargement of image processing and velocity control integration of Fig. 4-2

This control algorithm provides speed control of the drone and this method of control
focuses on the horizontal position of the drone. A pre-stabilization of the drone is done with
IMU processing to keep the drone horizontally stable, although it is still prone to drift in the
case of wind. Then, the current location is adjusted with the servoing on the fiducial marker
position. The next section explains how the measured position is filtered to have an optimal
estimation of the drone pose.

4.3 Optimal Estimation

With a camera mounted on a gimbal, its control can make the vision always perpendicular
to the ground. The control algorithm of this case is simple because the horizontal pose error
is directly proportional to the difference of the image. In this case, the camera is fixed, facing
down relative to the drone. With this configuration, some cases send the wrong direction order
to the drone. For instance there is a case where the drone has too much angle attitude near to the
target. In 4-4, the drone is leaning forward and the marker is head-on using a camera reference
frame, but the drone needed to go backward.
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Fig. 4-4 Schematic 2D view of the camera reference frame over the marker

Where α is the pitch of the drone; dx_marker and dz_marker are respectively the horizon-
tal and the vertical distances of the drone respective to the marker. The measurement of these
distances is calculated using the equation 3-2. It is relatively noisy due to micro oscillations
of the drone and the quality of the image measurement. To smooth data, the signal processing
proposed includes KF and a low pass filter. Because the marker is not always detected by the
algorithm, it could have a lack of data. The prediction part of the KF can estimate drone position
when few positions are measured. Addition of the low pass filter erases micro oscillations and
provides drone stabilization.

To land on the target, the thesis approach tries to decorrelate horizontal and vertical control,
the KF is applied on two-dimensional positions and linear velocity. These are expressed on the
marker system coordinates. The state variable at time k can then be written as,

xk|k =


Xk|k

Yk|k

Ẋk|k

Ẏk|k

 (4-1)
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A simple first-order kinematic model is used, thus only position and velocity are consid-
ered. Without knowing the control-input model, the state estimation equation 2-34 is,

x̂k|k−1 = Fkx̂k−1|k−1 (4-2)

and,

Fk =


1 0 ∆T 0

0 1 0 ∆T

0 0 1 0

0 0 0 1

 (4-3)

Where ∆T is the sampling period.

2-35 is simplified assuming a negligible noise of the process,

Pk|k−1 = FkPk−1|k−1F
T
k (4-4)

The estimated noise is assumed to be a Gaussian white noise as a standard approach of
the problem, neglecting the little oscillations of the camera measurement that is fixed under the
drone. The error covariance matrix with lightweight writing is given by,

Pk =


σ2
X σXσY σXσẊ σXσẎ

σY σX σ2
Y σY σẊ σY σẎ

σẊσX σẊσY σ2
Ẋ

σẊσẎ

σẎ σX σẎ σY σẎ σẊ σ2
Ẏ

 (4-5)

Since variables are independents, and position/velocity measurements are the same regard-
less of the direction,

σX = σY ; σẊ = σẎ (4-6)

and

σXσY = 0 ; σXσẊ = 0 (4-7)
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So the error estimation matrix can be simplified to,

Pk =


σ2
X 0 0 0

0 σ2
X 0 0

0 0 σ2
Ẋ

0

0 0 0 σ2
Ẋ

 (4-8)

Then, only X and Y positions are measured, so innovation 2-36 has,

Hk =


1 0

0 1

0 0

0 0

 (4-9)

The low pass filters remember the old measurements to attenuate high frequencies,

xk+1 = (1−KL)zk +KLxk (4-10)

Where KL is an empirical factor of the low pass filter which does not add delay; xk is the
filtered state at time k; zk is the measured state vector at k.

A measurement of filtered values is shown on the figure 4-5 below,

Fig. 4-5 Representation of a pose measurement with KF and low pass filtering stage relative to the time

KF allows to smooth the measurement, but some variations are still notable. The imple-
ment of a well-tuned low pass filter reduces these variations without decreasing the instanta-
neity. The result is a smoother curve that reflects a more continuous drone movement. The
comparison result of the three different pose estimators shows that the accuracy of the measure-
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ment could depend on the altitude. The closer the drone is to the ground, the measurement is
resultantly becoming more accurate. The solution considered in this optimal estimation is to
keep the coefficients constant from equation 4-1.

4.4 Drone Guidance

Using the command provided with PX4, the first option was to try and control the drone
position to land, which is the standard drone landing approach. It consists of two steps: hori-
zontal and vertical drone movement. This technique uses GPS localization and relatively low
vertical descent. The proposed approach is to mix horizontal and vertical movement. It consists
to give the vehicle a vertical speed and adjust continuously adjust the horizontal position.

4.4.1 PID Control

To accurately control the drone, the environment measurement needs also to be accurate
with a good refresh rate. It consists to estimate the 6 DOF drone pose, including orientation,
relative with landing pad measurement. This data processing ensures good quality of the system
input. The figure 4-6 below follows the proposed IBVS block diagram.

Fig. 4-6 Block diagram of the proposed IBVS implementation. p is the drone position; pd is desired position;
ep is error on position; v is the drone velocity; vd is desired velocity; ev is error on velocity; q is drone attitude.

The part circled in red is the proposed IBVS Implementation, while the blue part is a gen-
eral overview of the PX4 FC. Here is used a semi-controlled mode. The drone is horizontally
stabilized and controlled with linear velocity inputs. For the simulation as for the real implemen-
tation, the plant is not mathematically known. A more accurate model is presented in [42], but
in this study, the plant can be considered as a linear time-invariant system model with unknown
coefficients,
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ẋ = Ax+Bu (4-11)

y = Cx (4-12)

Where x is the state vector; u is a command vector; A, B and C are unknown matrices.

The PID coefficients have been found manually for a sufficient drone servoing. The
Ziegler-Nichols [76] method was attempted, however, it did not provide satisfactory results.

4.4.2 Multi-Scale Control

This control directly follows the use of the Fractal marker. When a marker of the scale
bellow is visible by the drone, an adapted control is provided. This is a specifically tuned PID.
It takes the assumption that the drone is better centered than at the previously seen marker. As
a result, PID coefficients have higher values.

Fig. 4-7 Decision diagram to set the scaled PID

In figure 4-7 above, the algorithm is set with two scales, but the process can be generalized
with n scales. The algorithm has a discontinuity at the switch. The effect of the switch will be
briefly observed in the experimental section, later in this chapter.
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4.5 Landing Simulation

The drone is an IRIS model on the Gazebo simulator. As mentioned prior, the camera is
fixed and facing down. The vertical speed is set to the maximum permitted by the FC. With
GPS localization it is relatively easy to autonomously bring the UAV to the proposed initial po-
sition. The initial altitude is set to 10 m, which is the fixed height where the transition between
GPS localization and visual localization can be done. At this altitude a 0.8*0.8 m2 marker is
well detected and the horizontal (xENU , yENU) position is then set as random but visible by the
UAV in the respective range ([−4, 4], [−2, 2]). The following experiments compare different
autonomous drone landing scenarios. Each guidance technique has been done 30 times.

4.5.1 PID Control Simulation

After normalization and synchronization of the measurements, the drone landing trajectory
can be plotted. The following trajectory in Fig. 4-8 has been obtained for a fly with the initial
world position (4.9, 1.4, 10). The point (0, 0, 0) is aimed by the drone and trajectory is adjusted
thanks to its visual measurements.

Fig. 4-8 Drone landing trajectory (blue) with measured position (red) and estimated position (yellow) from
initial position (4.9, 1.4, 10)

The three following landing outcomes (4-9, 4-10, 4-11) are displayed on a 2 ∗ 2m2 area
graph to make further comparison easier. It begins with the landing position on Fig. 4-9 using
an ArUco marker,
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Fig. 4-9 Landing positions of the drone using ArUco marker and PID control

Using the 0.8*0.8 m2 ArUco marker, the drone lost vision of the target at 1.5 m altitude.
The final positions visible on the graph 4-9 are centered around the origin which is the target
point. The landing position using the NN is then plotted on the following figure 4-10,

Fig. 4-10 Landing positions of the drone using the proposed NN and PID control

The position plotted on Fig. 4-10 looks similar to the previous one 4-9 usingArUcomarker.
During the descent, the drone is shown to reach the vertical of the marker faster in comparison
to ArUco.
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4.5.2 Multi-Scale Control Simulation

Fractal markers are used for this experiment. The size of the larger one is kept to 80 ∗ 80
m2 and the control algorithm is adapted according to Fig. 4-7.

Fig. 4-11 Landing positions of the drone using a fractal marker and a multi-scale control

The plotted positions of figure 4-11 look more grouped than the other two series of mea-
sures. No noticeable movement has been detected at switch of PID coefficients of the multi-
scaled control.

4.5.3 Comparison Study

The multi-scale control is almost two times more accurate than the standard control on the
ArUco marker. The standard deviation shows more precise results.

Tab. 4-1 Comparative table of the landing precision, the duration, as well as the frequency of calculation of
three computer vision algorithms

Algorithm x (µ, σ2) (m) y (µ, σ2) (m) Duration (µ, σ2) (s) Rate (Hz)

ArUco (0.0455, 0.0086) (0.0597, 0.0166) (10.62, 0.0155) 7.06
Fractal (0.0462, 0.0021) (0.0290, 0.0018) (10.57, 0.0148) 4.26
Proposed NN (-0.0179, 0.1050) (-0.0250, 0.1266) (10.61, 0.0146) 22.55

Precision

The table 4-1 above compares the accuracy of different control algorithms using different
pose estimations. The drone position is considered to follow a normal distribution with mean µ
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standard deviation σ2. Even if the mean position of the proposed NN is closer to zero, the reader
will notice that its standard deviation is almost ten times larger than the ArUCo and almost a
hundred times larger than the fractal. This highlights the lack of precision of this technique.
Moreover the fractal, the multi-scale strategy is almost two times more accurate than standard
ArUco with PID on y-axis. The duration of the landing procedure and the refresh rate are also
compared below.

Speed

The three strategies have the same duration almost 10 s for 10 m, which means that in the
three cases the UAV has a vertical velocity of 1m.s−1. The standard GPS drone landing is not
studied for the landing position. The GPS noise of the Gazebo simulator is too low compared
to reality. Previous attempts [52], show that the accuracy does not reflect real a GPS position.
However, the landing duration is a suitable characteristic measurement. The landing duration
with the Gaussian measurement is (14.44, 0.40). This shows that the GPS landing has an aver-
age of 4 seconds longer, and this duration can vary greater than the visual servoing landing.

In the simulator, the maximum vertical speed of the IRIS drone is reached. Even with a
fine tune of the PID coefficient, where the drone reaches the vertical target faster, the landing
time is the same. Otherwise, the need for a different PID for the different scaled marker shows
a non-linearity of the plant.

Rate

The rate is the number of data processed over time. for this study, the same computer has
been used. This is a laptop with:

• 8 Go of RAM ;

• Core i5-9300H ;

• GTX1650 as a GPU.

This is a relatively low configuration as a computer, but it can easily be compared as an embed
computer. The rate result is relatively inferior to the one that can be found in different studies.
Aside from the low configuration of the calculation module, programming codes with Python
can also explain the slowness of the process. However, the ratio of the calculation speed of the
different algorithms to each other remains a good comparison tool. Thus, the speed of calcu-
lation of the strategy using the neuron network is three times faster than the ArUco standard.
And even if the fractal is almost twice slower than the ArUco, that did not prevent it from being
more precise.
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Other Studies

One can notice that the visual measurement obtained in Chapter 3 is not comparable with
the one obtained in this section. Even if the size of the landing pad differs between the two stud-
ies, the results are counter-intuitive because both image resolutions are the same. When using
a larger landing pad, the target is seen closer to the ground than in the previous study. The first
explanation is that the random generation of data does not cover all possible data. Therefore,
data positions closer to the ground could have been missed. The second explanation is the use
of different cameras on different software. The calibration on Blender and Gazebo has resul-
tantly been performed to correct distortion. The final explanation is the difference in luminosity
between the two software. Even using an adaptive threshold, fiducial detection is very sensitive
to luminosity. All of these combinations explain the variation observed in the data measured in
the experiments within Chapter 3 and 4.

In comparison to both of these review papers [6] [7], landing duration has been respectively
divided by seven for the same initial altitude. Besides, it is the same value as the one starting at
3m to achieve the same accuracy for landing. The reduction of flight time has the drawback of
increasing velocity at landing. The next chapter proposes an adapted landing leg to perform a
high-speed landing.
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5 Mechanical Landing Gears

Drone legs are the only point of contact between the drone and the ground. An ideal landing
should keep the drone stabilized on the ground and absorb part of impact at landing. Standard
drone landing gears embed a small piece of foam to absorb impact and attempts to stabilize the
drone on a flat landing area. Often, the drone lands with a high velocity in comparison to the
size of its landing gear. Even if the standard landing approach minimized vertical velocity, an
unwanted bounce would still result after ground impact. Rebounds generally have insignificant
effects, however, landing on a small area can make the drone bounce and coupled with high
velocity can result in damage. Lastly, a failed landing can cause irreparable damage to a drone
as well as its payloads such as an expensive camera or an important package holding, or even
its internal electronics. Thus, the addition of shock absorber aims to protect the drone from jolts
at landing, while also increasing speed and maintaining control at landing.

Some theoretical parameters used for the simulation were introduced in Basic Theory sec-
tion. Figure 5-1 shows a schematic representation of the landing gear and introduces the vari-
ables of the simulation.

Fig. 5-1 Scheme of landing drone

For a perfect land, without wind or ground effect, the four landing gears of the drone are
assumed to touch the ground at the same time. Moreover, the drone attitude is controlled by
the autopilot that helps to stabilize it horizontally. The schematization is justified as having
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an equivalent damper of the four real ones on a standard drone. Also, this scheme supposes a
perfectly vertical trajectory.

5.1 Absorption Simulation

In this section are presented the drone motion equation involved for the landing. Then the
dynamic is simulated to finally justify its interest.

5.1.1 Movement Equation

The following reasoning works under two main hypothesis:

• vy >> vx which means that only movement over y-axis is considered.

• No rotation of the object because drone stabilization in attitude is considered perfect.

Using force equations with the equation of the falling object, ones obtain falling drone
equation,

−mg − bv +N = ma (5-1)

or
ÿ = − b

m
ẏ +

N

m
− g (5-2)

Using collision equations, when the drone hits the ground y < l, one can find drone bounce
equation,

ÿ = − c

m
ẏ +

k

m
(l − y)− g (5-3)

5.1.2 Landing Kinetic

The landing dynamic is designed using a block scheme of Simulink. It use previous equa-
tions 5-2 and 5-3 to model effects of a given initial state. Then, acceleration a, velocity v and
position y are plotted.
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Fig. 5-2 Simulink block scheme of the hybrid system movement equation

The free-fall part of the simulation has beenmodeled onlywith block provided by Simulink,
while the bounce part has been written as a function.

A quantitative study follows with the landing dynamic observed also made possible by
Simulink. Characteristic values of a shock absorber [k, c] are fixed for a series of measure-
ments, and their effect on the movement is observed in the following graphs 5-3, 5-4, and 5-5.
Parameters of the simulation are fixed according to appendix A.3.1 and try to get as close to
reality, but the elastic and friction coefficient is proposed with a visible and characteristic effect
on the collision motion.

Fig. 5-3 Drone positions at landing for different shock absorber coefficients
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Important features can be observed with the measures on the graph 5-3. An impact with a
significant stiffness k and a low elastic coefficient of c is the only one bouncing. It reaches 60cm
at its first jump after landing. One can notice that for a low c, a shock absorber has the maximum
oscillation amplitude. This to such an extent that the system almost touches the ground at less
than 2cm. Conversely, high friction coefficient c involves a small oscillation. Explanation on
subsection 5.1.3 argues why the final position in the amplitude of the shock absorber is not an
issue.

Fig. 5-4 Drone velocity at landing for different shock absorber coefficients

On figure 5-4, velocity at impact is vmax = 10.2m.s−1. In 35cm drone speed increased of
0.2m.s−1. The four simulated drones have the same impact speed, and the same kinetic energy.
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Fig. 5-5 Drone acceleration at landing for different shock absorber coefficients

Maximum acceleration is observable in Fig. 5-5 is reached with a high c value. Combined
with a high k, the simulated drone undergoes 1000G acceleration, and drops to 273G with a
low k. A low c shows diffuse deceleration, which does not exceed 50 G.

Fig. 5-6 Drone position over time for different initial velocity

Then with fixed coefficients k and c according to A.3.1, it is convenient to find maximum
speed at landing. Here on figure 5-6 it is for v0 = 16 m.s−1 where vmax = 16.1 m.s−1. This
correspond to the curve approaching as close to the ground.
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5.1.3 Interest of Shock Absorber

Every material and mechanical structure can be modeled as a shock absorber. But most of
these have low absorption effects and will bounce. A good example of materials that have low
absorption effects is standard plastic drone landing gears. As a result, they bounce when they
have speed at ground collision, and bounce height increases with velocity. Contrary to living
beings, machines are less sensitive to important acceleration or deceleration. The only matter
for an object deformation at collision is to avoid going into material plasticity.

A standard landing approach focuses on reducing speed to avoid bounce at landing. How-
ever, the goal of this thesis is to challenge the standard approach by reaching the maximum
speed at landing through using adapted landing gears. This approach can reduce flight time,
protect the platform in case of lack of battery, and increase landing control to avoid bounce.
Therefore, a shock absorber is required. It will convert kinetic energy into heat with friction.
The spring on a standard shock absorber helps the system get back to its initial position. Drone
landing, similar to rocket landing, only requires impact absorption. Without any spring effect,
absorption systems can be deployed manually between two flights. Though, the only use for
drone landing gears is to ensure landing. The capacity to land then take off without outside
intervention can be achieved using a relatively soft spring. It is easier to implement for fluid
friction and will have a long response time. It doesn’t really matter for a drone, because legs
will have time to get to their original position during flight time.

5.2 Absorber Gear Kinematic

The standard design of landing gears is made for a relatively minimal shock. This implies
a small displacement of legs at landing. Two kinematic are noticeable for landers and landing
rockets: three hinges and four hinges. Three hinges are the most common ones, and the first
lunar landers (5-7a) have already used them. This kinematic is also used by Space X for the
reusable rockets (5-7b). These two examples effectively absorb a bit shock at landing, contrary
to blue origin (5-7c). Certainly, the kinematics of the landing feet has 4 points of rotation, but
the rebounds visible during its landing show that the entire structure absorbs the energy.
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(a) Apollo 11 Lunar Module (b) Space X Falcon 9 (c) Blue Origin

Fig. 5-7 Images of landing gears of different landers

More complex kinematic absorbers exist for downhill mountain bicycles, and some have
more than five swivels. Therefore, shock absorption is increased tenfold in a restricted dis-
placement. The research is focused on a relative system, so only four swivels will be used.
The proposed kinematic tries to minimize the vertical size of the legs. The maximum travel of
the landing gear is increased with a size ratio, and displacement of the absorber is amplified
at the extremity of the leg. Moreover, the point of contact of the leg has an almost rectilinear
displacement which reduces transverse forces and the foot only undergoes compression.

(a) Four swivels parallelogram at initial position (b) Four swivels parallelogram at final position

Fig. 5-8 Four swivels parallelogram landing gear kinematic at landing

A perfect parallelogrammechanism during compression implies a horizontal displacement
of the contact point 5-8. Point F moves d distance to F ′. This type of displacement has not
managed an effect. In the real world, it would be unable to predict how the floor would react.
This depends on the type of floor: cement of tarmac, the sand of the desert, or grass of a field.
Thus, a vertical landing movement has to minimize horizontal displacement. The proposed
kinematic on figure 5-9 tries to reduce d.
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(a) Proposed four swivels at initial position (b) Proposed four swivels at final position

Fig. 5-9 Proposed landing gear kinematic at landing

The length of different arms is mentioned in the appendix. The reader will make attention
on the difference between figure 5-9a and 5-9b where the distance OF is equal to OF ′. This
proposed kinematic thus reduce the observed displacement in Fig .5-8.

5.3 Landing Gear Design

This section presents two landing gear designs: a classical rigid mechanism and a compli-
ant mechanism.

5.3.1 Rigid Landing Gear

For the experiment, a radio-controlled (RC) car shock absorber was used. It has two fric-
tion coefficients: dry friction and fluid friction. The first one can be modified with adapted
fluids with different viscosity. The second one can be modified with different o-rings around
the shaft in translation. Moreover, the spring return force can be changed using different springs.
A leverage effect was chosen, as the travel distance of a shock absorber is fixed and relatively
short. It is implemented on a rotation bar with the ratio that maximizes both landing gear travel
and shock absorber travel. For the dimension of the drone, the shock absorber has a horizontal
placement that is more suitable given its size. For rocket implementation, vertical placement of
the shock absorber is preferred. To distribute effort symmetrically and avoid bar collision, the
shock absorber goes through the mainframe, and this design is observable on 5-10c.

Shock absorbers used for the proposed landing gear come from remote-controlled (RC)
cars and are observable on figures 5-11. A set of different springs permits the modification
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elastic effect. The friction coefficient could be changed using different viscous fluids. Here,
the adopted solution is to use tighter o-rings. More, the friction effect will also depend on the
tightness of the hinge. Made from a bolt, it can increase friction effect or not if it is screwed or
loosen. The addition of some oil allows reducing static friction of the o-ring.

(a) Face view (b) Side view (c) Three quarter view

Fig. 5-10 General assembly views of the mechanical landing gear

Plastic arms that compose the landing gear in Fig. 5-10 are 3D printed in a basic Polylactic
Acid (PLA). Standard printing parameters for this kind of plastic are kept and infill density is
10% with gyroid shape. This infill allows an isotropic reaction of the piece and is suitable for a
priori test.

(a) Extended rigid landing gear (b) Compressed rigid landing gear

Fig. 5-11 PLA 3D printed rigid landing leg with RC shock absorber

The printed rigid structure 5-11a with shock absorber reaches a weight of 75g, meaning
that the entire drone will increase its payload to 300g. The leg compressed shows on figure
5-11b a 6cm absorption amplitude.

5.3.2 Compliant Landing Gear

Contrarily to a standard rigid structure, the compliant landing gear tries to provide an al-
ternative to the traditional shock absorber. It is possible to print landing gears and mount them
faster on the drone.
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Absorption Effect

Given a compliant material, a notable spring effect is evident on the hinges. The thickness
gives the spring effect: a thin beam has a soft effect while a thicker beam has a more rigid effect.
Then, to look like a shock absorber, the friction coefficient needs to be added. Current theories
assure that when two diagonal hinges distance grows for convex four-bar mechanisms, the two
others get closer. From where the first design has been proposed below on figures 5-12,

(a) Compliant architecture with friction slats
(b) Improved compliant architecture with fric-
tion slats

Fig. 5-12 Four-bar compliant mechanisms with two frictions slats

The second proposed design (Fig. 5-12b) tries to improve the first one (Fig. 5-12a) with
a better friction effect and an easier displacement. Unfortunately, the friction effect has been
shown too soft on an empirical test. However, a more reliable technique is then proposed. From
the basic parallelogram architecture, the rotation of the upper part over the crank is noticeable
in Figs. 5-13. It exists at some points that are constantly equidistant during this rotation. These
points describe arcs of circles drawn in dotted lines in the following diagrams,

(a) Four-bar mechanism at initial position (b) Four-bar mechanism after a rotation

Fig. 5-13 Rotation of four-bar parallelogram mechanism

On 5-13 C and C ′ are always tangent. The proposed idea is to decease this distance by
increasing radius curvature along with the rotation.
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(a) Four-bar compliant model at initial angle α (b) Four-bar compliant model at angle α′

Fig. 5-14 Rotation of four-bar compliant mechanism model

The proposed scheme of the system is composed of two parallel springs to simulate the
normal force to sustain over the two arcs of a circle. On Figs. 5-14, between α to α′ elongation
of the spring is δh = h− h′. Over a rotation of π rad of the system radius curvature goes from
r to r′. The radius depends on α and increases linearly in order to write r(α). Assuming the
spring return force,

Fk = −k∆h (5-4)

where k is constant elastic coefficient and ∆h is elongation of the spring,

∆h = 2r(α) (5-5)

thus combining 2-51, 5-4 and 5-5, for a given material, the absolute friction coefficient of
this structure is,

Ff ≤ 2r(α)µk (5-6)

Internal mechanism elasticity enhances linearly effort applied to the touching arcs. This
explains why the theoretical model is adjusted using springs instead of bars and increases the
normal force applied from one surface to another surface. The friction between the two parts
during the movement increases.

77



西北工业大学硕士学位论文

(a) First compliant design (b) Second compliant design

Fig. 5-15 3D printed compliant four-bar absorber

An empirical comparison of the two proposed designs of figure 5-15 shows that the ex-
pected effect is more noticeable for the second proposed design. It is also easier to control the
friction coefficient. Indeed it is relative to radius curvature of this part.

Compliant Design

This compliant structure is made from one full, 3D printed piece. It is easier to replace it
as a unique piece in case of brakes. Without a metallic shock absorber, this mechanism tries to
have the same weight as a traditional landing leg, keeping the interesting frictional effects.

The compliant landing gear tries to reuse 5-16a found for the perfect parallelogram and
apply it to the proposed kinematic. Hinges of the landing gears are in right-circular shape for
the following proposed designs of figure 5-16,

(a) Compliant landing gear shell (b) Compliant landing gear proposed shape

Fig. 5-16 Compliant landing gear design

In 5-16a the two inner curved part has an increasing radius to increase friction during
landing absorption. The final design 5-16b compared to the left one has different modifications.
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The radius of the frictional part increases drastically at the end of travel. This affects to block
the four-bar mechanism motion when the leg is fully compressed. Then to get a light-weight
structure keeping rigidity, the landing gear has been drilled with a hexagonal compact shape.

(a) Extended compliant landing gear (b) Compressed compliant landing gear

Fig. 5-17 PP 3D printed compliant landing leg

To have good compliant properties, the plastic used is polypropylene (PP). Even if it is
more complicate to 3D print, this plastic has impressive resistance to fatigue and collision. For
these reasons, it is widely used by industry for every day containing like saucepot or shampoo
container. For the printing, there is no infill density, the rigidity is allowed by the wall of the
hexagonal shape. The thickness of the landing gear is chosen as 15mm and the thickness of the
right-circular hinge is 2mm. On the real compliant leg, the curvature radius is more important
than in theory. This compensates the natural flexion of the material to have the expected fric-
tional effect.

During compression observable on figure 5-17b, the curved parts in contact are subject to
friction. Hinge elasticity assures the contact of the frictional parts, and elongation of the radius
increases the frictional effect. A slight twist of the upper bar is noticeable in figure 5-17b. The
leg compressed has, like the rigid leg, 6cm absorption amplitude. The effects of a standard
shock absorber are then reproduced on a unique piece.

5.4 Shock Absorption Experiment

This experiment tries to confirm the feasibility of shock absorber and effect at ground
impact. Different shock absorber will be compared:

• A little commercial landing leg that is sometimes used for the common F450 frame.

• A big commercial landing leg that is also often used for F450 frame.

• The rigid landing leg with kmin and cmin: the softer springs are used and the original
o-ring having low friction effect stay on the shock absorber.
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• The rigid landing leg with kmin and cmax: difference with the previous one is the use of
tight o-rings that are specially PP 3D printed.

• The rigid landing leg with kmax and cmin: it doubles the hardest spring tomaximize spring
effect and uses the original o-ring.

• The rigid landing leg with kmax and cmax: use both, the doubled hard spring and the tight
tailored o-spring.

• The compliant landing leg that is a unique 3D printed piece.

The commercial landing gears have been 3D printed in PLA and have the following shape,

(a) Little commercial landing leg (b) Big commercial landing leg

Fig. 5-18 Images of commercial landing gears used during experiment

5.4.1 Experiment Procedure

A unique landing gear is studied at once, and theweight of themobile is a quarter of the total
drone weight to have the same effect as one landing gear. To keep a vertical fall and avoid any
rotation, the system is mounted on a rail. Here, three cables are tightened and three equidistant
tubes slide along. These tubes are 3D printed in PLA and attempt to minimize friction during
descent. The system has three arms because it has been decided that it is the perfect number to
stabilize the descent, without too much friction and to keep the mobile horizontal.
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Fig. 5-19 Photo of the experiment benchmark on the left and its schematic kinematic linkage on the right

A standard tarmac, made of cement is really hard. For this reason, the experimental landing
area is made from a concrete block. This is the worst situation for the drone because all its
kinetic energy will be absorbed by its own structure. Each drop is filmed with a fixed camera.
A distance reference is placed on the video to scale measurements, and a visual tracker is placed
on the mobile. The video data are then processed using Tracker v5.1.4, video analysis, and
modeling software.

5.4.2 Experiment Results

Following the previous procedure, the results are shown below. In this section, ”camera
frame”, contrary to the usual meaning given, means the number of the filmed image. It begins
with the little commercial landing leg 5-18a,
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Fig. 5-20 Bouncing trajectory of little commercial landing leg

From the first drop observable on figure 5-20 the system with the little landing leg has
bounced. The landing gear brakes after at the second try from only 50cm height. Then the big
commercial landing leg 5-18b has been tested.

Fig. 5-21 Bouncing trajectory of big commercial landing leg

On the trajectories plotted on figure 5-21, the standard landing leg also had bounced from
25cm height. It collapsed at one step further than the previous gears, from 75cm height. After
experimenting with these two commercial landing gears as a landmark, follows the proposed
landing gears. The first is a rigid one with the lowest elastic and frictional coefficients.
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Fig. 5-22 Bouncing trajectory of rigid landing leg with kmin and cmin

Even if the bounce effect (Fig. 5-22) of this landing gear having a small coefficient k and
c has been absorbed from 25cm height, the structure cracked at the 50cm drop. Keeping a low
elasticity k, the friction is maximized for the next measurement. A tighter PP 3D printing o-ring
is used and the hinge screws are tightened.

Fig. 5-23 Bouncing trajectory of rigid landing leg with kmin and cmax

More measurements plotted on figure 5-23 have been done with this configuration of the
landing gear. The system did not crack at the maximum 3.5m height and has finally been
manually projected to the ground. This correspond to the measurement vmax on the graph 5-
23. Bounces start at 1mwith few centimeters amplitude and are mainly due to the frame instead
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of the spring of the shock absorber. The trajectory of the system with the hardest spring and
minimizing friction follows,

Fig. 5-24 Bouncing trajectory of rigid landing leg with kmax and cmin

In this configuration, bounce begins at 25cm height (Fig. 5-24). Measurement shows a
steady increase in the bounce amplitude. The leg collapsed at the manual projection of the sys-
tem. The final rigid leg configuration used for the experiment follows with the highest friction
c and elastic coefficient k of the study.

Fig. 5-25 Bouncing trajectory of rigid landing leg with kmax and cmax

This landing gear has started to bounce at the 75cm height at few centimeters (Fig. 5-25).
It broke when falling 3.5m high. Because the benchmark has friction, some measurement like
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the one from 3.5m shows a good absorption. This absorption is due to the rails, when the mobile
goes up, it has more friction than when it descends. However, this did not prevent the significant
rebound from the 2.75m height. The bounce experiments terminate with the compliant landing
leg,

Fig. 5-26 Bouncing trajectory of compliant landing leg

It was noticeable during the experiment that the impact sound of these gears was very soft.
It started with a centimeter bounce at the 1m drop. The maximum height of dropping has been
2.5m and is observable in Fig. 5-26 where the bottom hinge near the fixed frame is torn.

5.4.3 Landing Gear Comparison Study

As a result of the experiment, many measurements have been conducted, the following
table 5-1 summarizes important values,
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Tab. 5-1 Comparative table of the performances of different landing gears

Landing gear type Broken drop
height (cm)

Max
bounce
height
(mm)

Max ve-
locity no
break
(m.s−1)

Weight
(g)

Max
kinetic
energy (J)

Max ve-
locity no
bounce
(m.s−1)

Little 50 18 1.478 365 0.399 0
Big 75 34 2.937 369 1.591 0
Rigid kmin, cmin 50 7 1.175 455 0.314 1.175
Rigid kmin, cmax 375 119 5.233 455 6.230 2.066
Rigid kmax, cmin 250 139 4.917 455 5.500 0
Rigid kmax, cmax 375 115 4.415 455 4.434 0.54
Compliant 250 46 4.350 415 3.926 2.113

Kinetic energy of the table 5-1 is the maximum one measured before the landing leg break.

Commercial landing legs broke before 1m of free-fall, as for the landing leg minimizing
friction and bound effect. On the other hand, landing gears with at least one coefficient maxi-
mized canmultiply until almost ten times the height of fall without breaking. The drop exceeded
3.5m for a maximized friction coefficient. Bounce was always observable for commercial gears
and the compliant gear has the maximum velocity reached without bounce. The maximum am-
plitude bounce is reached for the rigid leg maximizing k and minimizing friction. Maximum
velocity reached before the breakage of the gear and energy kinetic absorbed is ranked similarly
to the broken drop height. The weight variation between light commercial landing and the 70g
rigid has almost no effect on the variation of kinetic energy. The compliant gear has a faster
landing velocity, but it broke with a third less kinetic energy than the rigid leg maximizing fric-
tion with low elasticity.

During experimentation, all rigid landing gear, including commercial ones, made loud
sharp noise, while the PP compliant gear made a little noise.

Some results from the simulation were found in the experiment. A higher bounce of the
landing gear with maximum elastic coefficient k and the minimum friction c is evident. Max-
imizing c and minimizing k supports having the maximum landing speed without bounce, and
maximum velocity before landing leg breakage.

5.4.4 Experiment Discussion

As expected with the quantitative study of the simulation, the configuration maximizing
the friction coefficient c with a relatively low elastic coefficient k has better results. It creates a
drastic increase in speed collision without any bounce, and the bounce notified by this rigid leg

86



5 MECHANICAL LANDING GEARS

is a result of shock absorption by the body frame.

During experimentation, friction at descent is noticeable for maximum heights. Indeed, in
free-fall, the maximum speed is reached.

Fig. 5-27 Representation of position, velocity and acceleration of the mobile in free fall from 3.5m with
kmax and cmax

The acceleration stop, compensated by the friction, and a maximum speed before the col-
lision is reached. Some bounce was also absorbed by the rail mechanism of the experiment
bench. Even with the efforts input to reduce frictions, the altitude of the first bounce should,
in fact, have a higher altitude. This effect also explains the differences measured for maximum
velocity without breakage of the gear.

Measurements of the falling mobile were done with a camera at 25 FPS. Finer results
could have been fined with a higher measurement frequency provided slow motion. This lack
of speed sampling frequency is also observable before impact, where only a few points enable
the transition in the hybrid system to be seen.

Fig. 5-28 Bounce effect of rigid leg with kmin and cmax dropped from 175cm

The transition between free-fall and bounce effect is noticeable on 5-28 is pretty fast. Only
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two measurements have been done with the camera. Moreover, measurement has been done for
high-velocity collision, so even for small velocity, commercial landing gears starts to bounce.

Some parts of the landing gear have shown fragility that has been fixed. These parts have
been reinforcedmaking them larger. Landing gear designs allow the shock absorber tomoves on
its maximum amplitude. Thus, for high collisions of the frame, the shock absorber is retracted
to its minimum amplitude. In this position, effort undergoes by the landing gear is transferred
from the ground to the drone structure.

Even if the landing gear weight has almost no effect on the collision, it still affects drone
consumption. A dead weight reduce drone fly duration increasing battery consumption. The
more the drone will weight to lift, the shorter the amount of time it will have in flight. Therefore,
an improvement of the shape must be studied to improve strength distribution at impact and
weight must be minimized.
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6 Conclusion

6.1 Thesis Summary

This study aimed to present a simple virtual dataset generator using the Blender 3D mo-
tor engine. With it a dataset providing an accurate landing pad localization was also generated.
This technique permitted after a training step for NN, to have accurate data prediction with low
quality images. In the same time, a more traditional localization has been implemented using
ArUco and fractal marker. Subsequently, the dataset was performed on a tailored CNN to op-
timize landing pad localization.

Afterward, visual processing was implemented in a Gazebo simulation. The CNN estimate
three time faster the marker position than the standard fiducial pose estimation. The fast landing
approach provided accurate results, and the use of the standard marker localization was com-
pared to a multi-scale control. A simple two scale implementation resulted in a more precise
outcome in comparison to using a standard marker. The duration of the landing maneuver has
been drastically reduced for the same accuracy than standard visual guidance.

Finally, this study analyzed the use of drone landing gears and proved that the landing ve-
locity can thus be safely increased. The landing leg kinematic linkage uses a four-bar theory.
For a vertical landing, the contact point also has vertical movement, which is almost completely
straight. Transformation of kinetic energy dissipates with friction placed on towards rotating
parts. Tight hinges and shock absorbers provide the desired absorption result on a rigid mech-
anism. While the absorber design has been proposed for a compliant mechanism.

6.2 Discussion and Future Works

Future works will focus on technique improvement and electric rocket implementation.
More realistic images can be provided to generate the dataset, which can be done using a more
powerful 3Dmotor engine such as Unreal Engine. The landing pad pattern could be complected
using RGB shape and fractal disposition. This kind of complex shape is used on recent motion
capture suits. Additionally, the camera lens deformation can be added to the generator and
can avoid a step when image processing to increase FPS. A boolean should be added to the
dataset, also added some image without the landing pad. This kind of images should help the
NN to make the transition between GPS servoing and visual servoing. The estimated position
can be done with fusion of visual data with IMU or GPS when it is possible. Resultantly,
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the vertical speed can be increased when using other drones. If the vertical speed exceeds the
maximum speed that can absorb landing gears, a reduction of speed relative to the height will
be implemented. Landing gears should have their weight reduced. Shape of the parts have to
be optimized likewise the 3D printing parameters. Real world experiments and adaptations of
the work presented on the e-rocket will follow.
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APPENDIX

Appendix

A.3 Parameters

A.3.1 Simulink Vertical Fall Simulation

g = 9.81m.s−2 is gravity acceleration
v0 = −10m.s−2 is initial speed, going downward
y0 = 0.5m is initial height
b = 0.3 is the drone drag
m = 1.68 kg is the drone weight
N = 2 N is the constant drone thrust
l = 0.15m =m is the empty length of the landing leg
k and c are respectively elasticity and damping coefficients,

khigh and chigh: k = 2000 and c = 2000

klow and chigh: k = 200 and c = 500

khigh and clow: k = 4000 and c = 60

klow and clow: k = 200 and c = 120

kvmax and cvmax: k = 1500 and c = 170

A.3.2 Kinematic Proposed Parameters

AB = 100 mm

BC = 30 mm

CD = 120 mm

AD = 50 mm

BF = 40 mm

CF = 50 mm
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A.4 Mechanical Linkage

Fig. 1-1 Mechanical Normalisation of Linkages
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